6 research outputs found

    An eight‐channel Tx dipole and 20‐channel Rx loop coil array for MRI of the cervical spinal cord at 7 tesla

    Get PDF
    RÉSUMÉ: The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1+ uniformity, power efficiency, and/or specific absorption rate efficiency. B1+ homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord

    Development of an Innovative Solution Minimizing RF Field Inhomogeneity and Energy Deposition in Ultra-High Field MRI Applications

    No full text
    Bien qu’apportant de nombreux bĂ©nĂ©fices en termes de qualitĂ© d’image, l’IRM Ă  trĂšs hauts champ est particuliĂšrement sensible aux artefacts liĂ©s Ă  la rĂ©duction de la longueur d’onde du champ B1+ nĂ©cessaire pour basculer les spins hors de leur position d’équilibre. Cette longueur d’onde devenant plus petite que la plupart des rĂ©gions du corps imagĂ©, cela induit une inhomogĂ©nĂ©itĂ© spatiale de l’angle de bascule qui, Ă  son tour, entraine des variations d’intensitĂ© dans l’image finale. Afin de rĂ©duire ces inhomogĂ©nĂ©itĂ©s, des antennes Ă©quipĂ©es de plusieurs transmetteurs pouvant ĂȘtre excitĂ©s en parallĂšle deviennent de plus en plus populaires pour l’imagerie Ă  trĂšs haut champ, car la possibilitĂ© d’envoyer diffĂ©rentes impulsions Ă  chaque transmetteur offre un meilleur contrĂŽle sur les interfĂ©rences radiofrĂ©quences. Ce procĂ©dĂ© d’homogĂ©nĂ©isation de champs est appelĂ© B1+ shimming (ou RF shimming) et requiĂšre du matĂ©riel et des logiciels sophistiquĂ©s, ainsi que temps de scan supplĂ©mentaire, ce qui peut ralentir son intĂ©gration dans le milieu clinique. Dans des rĂ©gions telles que la moelle Ă©piniĂšre, oĂč les tissus prĂ©sentent d’importantes variations en termes de propriĂ©tĂ©s Ă©lectromagnĂ©tiques, cela devient encore plus difficile d’obtenir un champ B1+ homogĂšne. La profondeur de la moelle Ă©piniĂšre Ă  l’intĂ©rieur du corps peut elle aussi limiter la puissance du champ B1+, rĂ©sultant en un faible signal RM dans cette rĂ©gion. De plus, l’importante variabilitĂ© anatomique de la rĂ©gion vertĂ©brale d’un patient Ă  un autre vient elle aussi complexifier la crĂ©ation d’une impulsion qui rĂ©sulterait en un angle de bascule spatialement homogĂšne pour diffĂ©rents sujets. L’objet de cette maĂźtrise consistait Ă  dĂ©velopper un logiciel en libre-accĂšs dĂ©diĂ© au B1+ shimming, couvrant les scenarios les plus couramment utilisĂ©s et prenant en compte la dĂ©position d’énergie dans les tissus afin d’assurer la sĂ©curitĂ© du patient. La comptabilitĂ© avec des outils de segmentation automatique du cerveau et de la moelle Ă©piniĂšre a Ă©galement Ă©tait implĂ©mentĂ©e afin de pouvoir effectuer un B1+ shimming ciblant ces rĂ©gions spĂ©cifiques. Cette implĂ©mentation a Ă©tĂ© intĂ©grĂ©e au projet Shimming-Toolbox, initialement dĂ©veloppĂ© homogĂ©nĂ©iser le champ B0. Un test in-vivo a par la suite Ă©tĂ© effectuĂ© dans la moelle Ă©piniĂšre Ă  7T et a montrĂ© une amĂ©lioration de l’homogĂ©nĂ©itĂ© le long de la moelle Ă©piniĂšre aprĂšs B1+ shimming sur des images anatomique GRE et MP2RAGE, ainsi qu’une augmentation du signal dans la rĂ©gion thoracique.----------While it offers important image quality benefits, Ultra-High Field MRI is particularlysensitive to RF related artifacts caused by the decreasing wavelength of the B1+ field required to flip the spins. This wavelength being smaller than most imaged body regions, it results in an inhomogeneous flip angle that induces intensity variations and local loss of signal across the image field of view. To reduce these inhomogeneities, multi-transmit coils with parallel transmission capability are becoming increasingly popular in UHF imaging, as they allow one to send different excitation pulses to each Tx element, providing better control of the RF interference pattern. This homogenization process is called B1+ shimming (or RF shimming) and requires complex hardware and software tools that hamper its clinical use. In regions such as the spinal cord, where surrounding tissues present important variations in terms of electromagnetic properties, it gets even harder to obtain a homogeneous B1+ field. The depth of the spinal cord in the body may also hamper the generation of a sufficiently strong B1+ field in that region, resulting in a low MR signal. Moreover, the important anatomical variability of the spine region across patients further complicates the design of an excitation pulse that would result in robust inter-subject flip angle homogeneity. For these reasons, it is expected that performing patient-specific B1+ shimming with a focus on the spinal cord could improve the image homogeneity. The focus of my master’s project was on the development of an open-source B1+ shimming software solution that covers the most basic shimming scenarios and accounts for energy deposition in tissues, so as to ensure patient safety. Compatibility with brain and spinal cord segmentation tools was also implemented so that localised B1+ shimming could be performed over specific regions. This B1+ shimming implementation was integrated within the Shimming-Toolbox project, initially developed to homogenize the main static magnetic field B0. It was then tested in-vivo to perform patient specific B1+ shimming during spinal-cord imaging at 7T and resulted in an improved homogeneity in the spinal-cord on structural GRE and MP2RAGE images, with coefficients of variation reduced by up to 40% and 11% respectively, as well as in a recovered signal in the thoracic spinal cord

    shimming-toolbox

    No full text

    Shimming-toolbox : an open-source software package for performing realtime B0 shimming experiments

    No full text
    corecore