383 research outputs found

    The Impact of the COVID-19 Pandemic on Special Education: A Case Study

    Get PDF
    The purpose of this research project is to explore the possible impact of the COVID-19 pandemic on special education by evaluating the experiences of one child with disabilities who attends public schools. METHODS: A semi-structured interview was conducted with the two parents of the child, who has physical disabilities and an IEP through his school, meaning he receives special education services through intervention teachers, physical therapists, occupational therapists, and speech therapists. The interview was recorded and transcribed, and then interview transcripts were evaluated to identify themes in the subjects’ responses regarding their child’s experience with public education during the pandemic. RESULTS: Analysis revealed the student had struggles with telehealth therapy services, exhaustion, and socializing that the subjects attributed to the pandemic. Contrarily, the subjects saw positive impacts regarding communication with teachers, insight on their child’s education, and newfound understanding from teachers that they credited with the pandemic. DISCUSSION: Overall, these results may provide insight for experiences in special education during the pandemic. In all, these results indicate the COVID-19 pandemic will have lasting impacts on special education

    A Case Study on Special Education and the COVID-19 Pandemic

    Get PDF
    The purpose of this qualitative project is to explore the implications of online public schooling for a student with special needs, how this type of teaching impacted his individualized education plan (IEP), and investigate solutions to the consequences of the pandemic for special education. I am specifically interested in how the student\u27s online education may have affected his progress in the physical, occupational, and speech therapy services he typically receives in school as required by his IEP. This project entails interviews of the parents and school-based occupational therapists of a child with special needs to examine the impact online schooling had on his IEP

    Advances in Design Procedures and Detailing of Structural Systems

    Get PDF
    The design of structural systems is a complex process which encompasses many different aspects of structural engineering. The design process includes understanding the load demands placed on the system, designing and detailing the structural components to withstand the demands and the fabrication/construction of the final system design. The work presented in this dissertation covers a breath of topics within the field of structural engineering including: site assessment procedures for structures subjected to tsunami generated debris, the development of an innovative composite bridge system and shear connection and non-destructive evaluation of fully grouted post-tensioned bridge systems. Collectively, the original research contributions in each of three topics resulted in improvements to the overall design process of structural systems. The advancements to the design process presented in this dissertation include: assessment of demands on structural systems, developing new detailing of structural components, overall design changes to allow for improved inspection techniques and the development construction and fabrication methods for a prototype system.Currently, the United States has no codified guidelines in place for designing against the effects of tsunami events despite having a number of tsunami prone areas including: Alaska, California, Hawaii, Oregon and Washington. The lack of design guidance has left many coastal communities in the U.S. at risk. Recent tsunami events including Japan 2011, Chile 2010 and Indian Ocean 2004, motivated the engineering community to understand the effects of these events and to develop methods to design structural systems to withstand tsunami generated loads. This research effort was focused on developing site assessment procedures for structures subjected to tsunami generated debris impacts. A debris classification system was developed to group debris by the potential impact demand each item can generate. Four characteristics that contribute to the impact force demand for debris items where identified including debris: mass, stiffness, buoyancy and cumulative length. Based on these characteristics debris items are grouped into three categories, small, moderate of large debris. Small debris items will generate low level demands on the systems typically an impact force of 6000 lbs. or less large debris items will generate extreme levels of demand, typically an impact force of 1000 kips or greater and moderate debris is any debris item that generates an impact force that falls in-between. Large debris items such as shipping containers and shipping vessels can place extreme loads on structural systems resulting in collapse of the system if not properly designed. An impact hazard region was developed which provides design engineers with a probable region over which large debris items will disperse in a tsunami event. Knowing the location of the debris origin and the assumed flow direction of the event the impact hazard region can be constructed for any tsunami prone location. The development of the debris impact hazard region allows design engineers to determine, based on the location of a structure, if design against impact of large debris is necessary. The impact hazard region has been adopted by ASCE 7-16.The energy grade line (EGL) method, used to approximate water velocity and inundation height at a building site within an inundation region, has not yet been widely validated within the archival literature. Analytical results utilizing the EGL method were generated for a region of Hawaii and compared with results from a two-dimensional tsunami inundation simulation. Based on this comparison it was found that the EGL was under estimating the water velocity and inundation compared to the site-specific analysis. This under estimation was attributed to the discrepancy in runup elevation at the inundation limit provided by ASCE runup data and the corresponding elevation obtained for the same location using the available digital elevation model data. A modification to the EGL method to account for this discrepancy in elevation was proposed to improve the estimates of the EGL method, which extends the EGL transect past the inundation limit to an elevation on the DEM equal to the runup elevation provided by ASCE. Applying the modification to the energy grade line method results in more conservative approximations of water velocity and inundation height then the traditional energy grade line method as compared with the results of the site-specific analysis.Composite bridge systems have gained interest in the structural engineering community due to the ability for these sections to be cost effective alternatives to traditional steel or concrete systems. When properly designed, these systems take advantage of the ability for concrete to perform well under compressive stress and the ability of steel to resist the tensile stress. Composite systems can also allow for a more rapid construction time as a result of the ability for these sections to be prefabricated. The result of this research project is the development of a precast steel/concrete composite highway bridge system whose beam components are light-weight and easy to erect and fabricate. This research effort examines the shear transfer mechanism between the concrete slab and WT web and developed construction methods for the prototype system. A series of potential shear connector details were experimentally examined with push-off tests for the shear connection developed for the prototype system. A number of shear connector detailing parameters including the effect of: hole size, hole spacing, bar size and bar geometry were investigated. If was found that increasing the hole size and bar size increased the shear capacity of the connection. Increasing the hole spacing resulted in a decrease in capacity and bending the rebar as opposed to using straight bars increased the capacity. Based on the experimental testing the connector details utilized in the prototype system design was 1.5 inch holes with #6 bars through every hole, where the spacing of the holes is dependent on the shear demand along the length of the beam.Based on the experimental test data and destructive evaluation of the test specimens the failure mechanism for the connectors was determined attributed to two mechanisms. In the case where no reinforcement was placed through the connector the ultimate strength is attributed to shearing of the concrete dowels and in the case where rebar was placed through every connector hole the ultimate strength is attributed to initial yielding of the reinforcing bar. A design equation to approximate the capacity of the shear connection was developed based on the observed failure mechanisms and experimental test data.The prototype system shear details were designed based on the developed equation to approximate the shear capacity of the connection. The final design for the WT 20 x 74.5 system required 50 1.5 inch holes, with #6 bars in every hole in the half-span. Three different hole spacing was utilized in the half-span to meet the shear demands: 4 in., 6 in. and 11.25 in. spacing. Fabrication and construction methods were established for the newly developed prototype system, which were aimed at reducing fabrication cost and assuring critical dimensions of the system, such as embedment of the WT into the deck, are maintained for all precast components. Due to the fact that the WT section as well as the individually precast composite segments can be unstable at long lengths, a laterally torsional buckling analysis of the sections was performed. AISC design equations can directly be applied to the WT section; however, for the composite section design equations are not available so as part of this effort the available AISC equations were modified based on concrete limit states for construction loading and applied to the individual precast components.Post-tensioned concrete bridges represent a major component of the American bridge inventory and due to the benefits provided by this construction technique it is likely that many new post-tensioned concrete bridges will be built in the future to meet our infrastructure needs. However, recent cases in which corroded post-tensioning tendons were identified have caused industry wide concern and lead to a moratorium on post-tensioned constructions in some states. Post-tensioning systems are comprised of unique structural details including prestressing strand, ducts, anchorages, grout, and corrosion protection equipment. Current details for the construction of post-tensioning tendons do not facilitate the long term inspection of the various tendon components. As part of this research effort a state of the art review of available NDE techniques that can be applied to fully grouted post-tensioned systems was conducted. Currently available NDE methods were grouped into four different categories by monitoring capabilities: grout voids identification, strand corrosion detection, identification of tendon location and determining loss of prestress. Based on the state of the art reviews it was concluded that methods that can be directly integrated into future construction show the most promise for long term monitoring of post-tensioned tendons. A testing plan for two promising non-destructive testing methods, the electrically isolated tendon system and internal half-cell potential method, was developed. This testing plan has not yet been implemented, but outlines the design of a test specimen and testing procedures that can be utilized to verify the long term monitoring capabilities of the system as well as perform a sensitivity study on the level of damage which can be detected

    Integrating rough set theory and medical applications

    Get PDF
    AbstractMedical science is not an exact science in which processes can be easily analyzed and modeled. Rough set theory has proven well suited for accommodating such inexactness of the medical profession. As rough set theory matures and its theoretical perspective is extended, the theory has been also followed by development of innovative rough sets systems as a result of this maturation. Unique concerns in medical sciences as well as the need of integrated rough sets systems are discussed. We present a short survey of ongoing research and a case study on integrating rough set theory and medical application. Issues in the current state of rough sets in advancing medical technology and some of its challenges are also highlighted

    Bayesian network modeling for evolutionary genetic structures

    Get PDF
    AbstractEvolutionary theory states that stronger genetic characteristics reflect the organism’s ability to adapt to its environment and to survive the harsh competition faced by every species. Evolution normally takes millions of generations to assess and measure changes in heredity. Determining the connections, which constrain genotypes and lead superior ones to survive is an interesting problem. In order to accelerate this process,we develop an artificial genetic dataset, based on an artificial life (AL) environment genetic expression (ALGAE). ALGAE can provide a useful and unique set of meaningful data, which can not only describe the characteristics of genetic data, but also simplify its complexity for later analysis.To explore the hidden dependencies among the variables, Bayesian Networks (BNs) are used to analyze genotype data derived from simulated evolutionary processes and provide a graphical model to describe various connections among genes. There are a number of models available for data analysis such as artificial neural networks, decision trees, factor analysis, BNs, and so on. Yet BNs have distinct advantages as analytical methods which can discern hidden relationships among variables. Two main approaches, constraint based and score based, have been used to learn the BN structure. However, both suit either sparse structures or dense structures. Firstly, we introduce a hybrid algorithm, called “the E-algorithm”, to complement the benefits and limitations in both approaches for BN structure learning. Testing E-algorithm against a standardized benchmark dataset ALARM, suggests valid and accurate results. BAyesian Network ANAlysis (BANANA) is then developed which incorporates the E-algorithm to analyze the genetic data from ALGAE. The resulting BN topological structure with conditional probabilistic distributions reveals the principles of how survivors adapt during evolution producing an optimal genetic profile for evolutionary fitness

    Max-FISM: Mining (recently) maximal frequent itemsets over data streams using the sliding window model

    Get PDF
    AbstractFrequent itemset mining from data streams is an important data mining problem with broad applications such as retail market data analysis, network monitoring, web usage mining, and stock market prediction. However, it is also a difficult problem due to the unbounded, high-speed and continuous characteristics of streaming data. Therefore, extracting frequent itemsets from more recent data can enhance the analysis of stream data. In this paper, we propose an efficient algorithm, called Max-FISM (Maximal-Frequent Itemsets Mining), for mining recent maximal frequent itemsets from a high-speed stream of transactions within a sliding window. According to our algorithm, whenever a new transaction is inserted in the current window only its maximum itemset should be inserted into a prefix tree-based summary data structure called Max-Set for maintaining the number of independent appearance of each transaction in the current window. Finally, the set of recent maximal frequent itemsets is obtained from the current Max-Set. Experimental studies show that the proposed Max-FISM algorithm is highly efficient in terms of memory and time complexity for mining recent maximal frequent itemsets over high-speed data streams

    Waldenstrom Macroglobulinemia and the Eye: A case report and review

    Get PDF
    Waldenstrom macroglobulinemia (WM) is a rare, malignant lymphoproliferative B-cell disorder causing an excessive buildup of monoclonal protein. WM is associated with excessive buildup of IgM, which can cause blood hyperviscosity and damage many organ systems. This case report describes a patient who was followed annually but rapidly developed posterior pole and significant midperipheral hemorrhages secondary to a hyperviscosity condition of the retina. Management of this condition is dependent on macular involvement and must be co-managed with an oncologist
    • …
    corecore