6 research outputs found

    The influence of ghrelin on the development of dextran sodium sulfate-induced colitis in rats

    Get PDF
    Ghrelin has protective and therapeutic effects in the gut. The aim of present studies was to investigate the effect of treatment with ghrelin on the development of colitis evoked by dextran sodium sulfate (DSS). Methods. Studies have been performed on rats. Colitis was induced by adding 5% DSS to the drinking water for 5 days. During this period animals were treated intraperitoneally twice a day with saline or ghrelin given at the dose of 8 nmol/kg/dose. On the sixth day, animals were anesthetized and the severity of colitis was assessed. Results. Treatment with ghrelin during administration of DSS reduced the development of colitis. Morphological features of colonic mucosa exhibited a reduction in the area and deep of mucosal damage. Ghrelin reversed the colitis-induced decrease in blood flow, DNA synthesis, and superoxide dismutase activity in colonic mucosa. These effects were accompanied by a decrease in the colitis-evoked increase in mucosal concentration of interleukin-1β and malondialdehyde. Treatment with ghrelin reversed the DSS-induced reduction in body weight gain. Conclusions. Administration of ghrelin exhibits the preventive effect against the development of DSS-induced colitis. This effect seems to be related to ghrelin’s anti-inflammatory and antioxidative properties

    Exogenous ghrelin accelerates the healing of acetic acid-induced colitis in rats

    Get PDF
    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis

    Essential role of growth hormone and IGF-1 in therapeutic effect of ghrelin in the course of acetic acid-induced colitis

    Get PDF
    Previous studies have shown that ghrelin exhibits a protective and therapeutic effect in the gut. The aim of the present study was to examine whether administration of ghrelin affects the course of acetic acid-induced colitis and to determine what is the role of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in this effect. In sham-operated or hypophysectomized male Wistar rats, colitis was induced by enema with 1 mL of 3% solution of acetic acid. Saline or ghrelin (given at the dose of 8 nmol/kg/dose) was administered intraperitoneally twice a day. Seven days after colitis induction, rats were anesthetized and the severity of the colitis was assessed. Treatment with ghrelin reduced the area of colonic mucosa damage in pituitary-intact rat. This effect was associated with increase in serum levels of GH and IGF-1. Moreover, administration of ghrelin improved blood flow in colonic mucosa and mucosal cell proliferation, as well as reduced mucosal concentration of proinflammatory interleukin-1β (IL-1β) and activity of myeloperoxidase. Hypophysectomy reduced serum levels of GH and IGF-1 and increased the area of colonic damage in rats with colitis. These effects were associated with additional reduction in mucosal blood follow and DNA synthesis when compared to pituitary-intact rats. Mucosal concentration of IL-1β and mucosal activity of myeloperoxidase were maximally increased. Moreover, in hypophysectomized rats, administration of ghrelin failed to affect serum levels of GH or IGF-1, as well as the healing rate of colitis, mucosal cell proliferation, and mucosal concentration of IL-1β, or activity of myeloperoxidase. We conclude that administration of ghrelin accelerates the healing of the acetic acid-induced colitis. Therapeutic effect of ghrelin in experimental colitis is mainly mediated by the release of endogenous growth hormone and IGF-1

    Ghrelin accelerates the healing of cysteamine-induced duodenal ulcers in rats

    Get PDF
    BACKGROUND: Previous studies have shown that administration of ghrelin exhibits protective and therapeutic effects in the gut. The aim of the present investigation was to examine the influence of ghrelin administration on the course of cysteamine-induced duodenal ulcers, as well as effects on mucosal production of oxygen free radicals and duodenal antioxidant defense. MATERIAL/METHODS: Duodenal ulcers were induced in male Wistar rats by cysteamine administered intragastrically at the dose of 200 mg/kg in 1 ml of saline, 3 times at 4-h intervals. Starting 24 h after the first dose of cysteamine, rats were treated intraperitoneally twice a day with saline or ghrelin given at the dose of 4, 8 or 16 nmol/kg/dose. Seven days after administration of the first dose of cysteamine, the study was terminated. RESULTS: Induction of ulcers by cysteamine was accompanied by a reduction in duodenal blood flow, mucosal DNA synthesis and mucosal activity of superoxide dismutase (SOD); whereas mucosal concentration of interleukin-1β and malonyldialdehyde (MDA – an index of lipid peroxidation) were increased. Treatment with ghrelin increased healing rate of duodenal ulcers and enhanced duodenal blood flow, mucosal DNA synthesis and mucosal activity of SOD, and reduced mucosal concentration of interleukin-1β and MDA. CONCLUSIONS: Treatment with ghrelin increases the healing rate of duodenal ulcers and this effect is related, at least in part, to improvement of duodenal mucosal blood flow, mucosal cell proliferation and antioxidant defense, as well as being related to reduction in mucosal oxidative stress and inflammatory response
    corecore