5 research outputs found

    Evolution of the strange-metal scattering in momentum space of electron-doped La2xCexCuO4{\rm La}_{2-x}{\rm Ce}_x{\rm CuO}_4

    Full text link
    The linear-in-temperature resistivity is one of the important mysteries in the strange metal state of high-temperature cuprate superconductors. To uncover this anomalous property, the energy-momentum-dependent imaginary part of the self-energy Im Σ(k,ω){\rm \Sigma}(k, \omega) holds the key information. Here we perform systematic doping, momentum, and temperature-dependent angle-resolved photoemission spectroscopy measurements of electron-doped cuprate La2xCexCuO4{\rm La}_{2-x}{\rm Ce}_x{\rm CuO}_4 and extract the evolution of the strange metal scattering in momentum space. At low doping levels and low temperatures, Im Σω{\rm\Sigma} \propto \omega dependence dominates the whole momentum space. For high doping levels and high temperatures, Im Σω2{\rm\Sigma} \propto \omega^2 shows up, starting from the antinodal region. By comparing with the hole-doped cuprates La2xSrxCuO4{\rm La}_{2-x}{\rm Sr}_x{\rm CuO}_4 and Bi2Sr2CaCu2O8{\rm Bi}_2{\rm Sr}_2{\rm CaCu}_2{\rm O}_8, we find a dichotomy of the scattering rate exists along the nodal and antinodal direction, which is ubiquitous in the cuprate family. Our work provides new insight into the strange metal state in cuprates
    corecore