150 research outputs found
Protective Effects of Pyridoxamine Supplementation in the Early Stages of Diet-Induced Kidney Dysfunction
Pyridoxamine, a structural analog of vitamin B6 that exerts antiglycative effects, has been proposed as supplementary approach in patients with initial diabetic nephropathy. However, the molecular mechanism(s) underlying its protective role has been so far slightly examined. C57Bl/6J mice were fed with a standard diet (SD) or a diet enriched in fat and fructose (HD) for 12 weeks. After 3 weeks, two subgroups of SD and HD mice started pyridoxamine supplementation (150 mg/kg/day) in the drinking water. HD fed mice showed increased body weight and impaired glucose tolerance, whereas pyridoxamine administration significantly improved insulin sensitivity, but not body weight, and reduced diet-induced increase in serum creatinine and urine albumin. Kidney morphology of HD fed mice showed strong vacuolar degeneration and loss of tubule brush border, associated with a drastic increase in both advanced glycation end products (AGEs) and AGEs receptor (RAGE). These effects were significantly counteracted by pyridoxamine, with consequent reduction of the diet-induced overactivation of NF-kB and Rho/ROCK pathways. Overall, the present study demonstrates for the first time that the administration of the antiglycative compound pyridoxamine can reduce the early stages of diet-dependent kidney injury and dysfunction by interfering at many levels with the profibrotic signaling and inflammatory cascades
Performance evaluation of a new on-demand molecular test for the rapid identification of severe acute respiratory syndrome coronavirus 2 in pediatric and adult patients
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has increased the need to identify additional rapid diagnostic tests for an accurate and early diagnosis of infection. Here, we evaluated the diagnostic performance of the cartridge-based reverse transcription polymerase chain reaction (RT-PCR) test STANDARD M10 SARS-CoV-2 (SD Biosensor Inc., Suwon, South Korea), targeting the ORF1ab and E gene of SARS-CoV-2, and which can process up to eight samples in parallel in 60 min. From January 2022 to March 2022, STANDARD (TM) M10 assay performance was compared with Xpert (R) Xpress SARS-CoV-2 (Cepheid, Sunnyvale CA) on 616 nasopharyngeal swabs from consecutive pediatric (N = 533) and adult (N = 83) patients presenting at the "Istituto di Ricovero e Cura a Carattere Scientifico" (IRCCS) Ospedate Pediatrico Bambino Gesu, Roma. The overall performance of STANDARD M10 SARS-CoV-2 was remarkably and consistently comparable to the Xpert (R) Xpress SARS-CoV-2 with an overall agreement of 98% (604/616 concordant results), and negligible differences in time-to-result (60 min vs. 50 min, respectively). When the Xpert (R) Xpress SARS-CoV-2 results were considered as the reference, STANDARD (TM) M10 SARS-CoV-2 had 96.5% sensitivity and 98.4% specificity. STANDARD M10 SARS-CoV2 can thus be safely included in diagnostic pathways because it rapidly and accurately identifies SARS-CoV-2 present in nasopharyngeal swabs
Deletion of RAGE fails to prevent hepatosteatosis in obese mice due to impairment of other AGEs receptors and detoxifying systems
Abstract Advanced glycation endproducts (AGEs) are involved in several diseases, including NAFLD and NASH. RAGE is the main receptor mediating the pro-inflammatory signalling induced by AGEs. Therefore, targeting of RAGE has been proposed for prevention of chronic inflammatory diseases. However, the role of RAGE in the development of NAFLD and NASH remains poorly understood. We thus aimed to analyse the effect of obesity on AGEs accumulation, AGE-receptors and AGE-detoxification, and whether the absence of RAGE might improve hepatosteatosis and inflammation, by comparing the liver of lean control, obese (LeptrDb−/−) and obese RAGE-deficient (RAGE−/− LeptrDb−/−) mice. Obesity induced AGEs accumulation and RAGE expression with hepatosteatosis and inflammation in LeptrDb−/−, compared to lean controls. Despite the genetic deletion of RAGE in the LeptrDb−/− mice, high levels of intrahepatic AGEs were maintained accompanied by decreased expression of the protective AGE-receptor-1, impaired AGE-detoxifying system glyoxalase-1, and increased expression of the alternative AGE-receptor galectin-3. We also found sustained hepatosteatosis and inflammation as determined by persistent activation of the lipogenic SREBP1c and proinflammatory NLRP3 signalling pathways. Thus, RAGE targeting is not effective in the prevention of NAFLD in conditions of obesity, likely due to the direct liver specific crosstalk of RAGE with other AGE-receptors and AGE-detoxifying systems
Deletion of RAGE fails to prevent hepatosteatosis in obese mice due to impairment of other AGEs receptors and detoxifying systems
Advanced glycation endproducts (AGEs) are involved in several diseases, including NAFLD and NASH. RAGE is the main receptor mediating the pro-inflammatory signalling induced by AGEs. Therefore, targeting of RAGE has been proposed for prevention of chronic inflammatory diseases. However, the role of RAGE in the development of NAFLD and NASH remains poorly understood. We thus aimed to analyse the effect of obesity on AGEs accumulation, AGE-receptors and AGE-detoxification, and whether the absence of RAGE might improve hepatosteatosis and inflammation, by comparing the liver of lean control, obese (LeptrDb−/−) and obese RAGE-deficient (RAGE−/− LeptrDb−/−) mice. Obesity induced AGEs accumulation and RAGE expression with hepatosteatosis and inflammation in LeptrDb−/−, compared to lean controls. Despite the genetic deletion of RAGE in the LeptrDb−/− mice, high levels of intrahepatic AGEs were maintained accompanied by decreased expression of the protective AGE-receptor-1, impaired AGE-detoxifying system glyoxalase-1, and increased expression of the alternative AGE-receptor galectin-3. We also found sustained hepatosteatosis and inflammation as determined by persistent activation of the lipogenic SREBP1c and proinflammatory NLRP3 signalling pathways. Thus, RAGE targeting is not effective in the prevention of NAFLD in conditions of obesity, likely due to the direct liver specific crosstalk of RAGE with other AGE-receptors and AGE-detoxifying systems
Effects of exogenous dietary advanced glycation end products on the cross-talk mechanisms linking microbiota to metabolic inflammation
Heat-processed diets contain high amounts of advanced glycation end products (AGEs). Here we explore the impact of an AGE-enriched diet on markers of metabolic and inflammatory disorders as well as on gut microbiota composition and plasma proteins glycosylation pattern. C57BL/6 mice were allocated into control diet (CD, n = 15) and AGE-enriched diet (AGE-D, n = 15) for 22 weeks. AGE-D was prepared replacing casein by methylglyoxal hydroimidazolone-modified casein. AGE-D evoked increased insulin and a significant reduction of GIP/GLP-1 incretins and ghrelin plasma levels, altered glucose tolerance, and impaired insulin signaling transduction in the skeletal muscle. Moreover, AGE-D modified the systemic glycosylation profile, as analyzed by lectin microarray, and increased N\u3b5-carboxymethyllysine immunoreactivity and AGEs receptor levels in ileum and submandibular glands. These effects were associated to increased systemic levels of cytokines and impaired gut microbial composition and homeostasis. Significant correlations were recorded between changes in bacterial population and in incretins and inflammatory markers levels. Overall, our data indicates that chronic exposure to dietary AGEs lead to a significant unbalance in incretins axis, markers of metabolic inflammation, and a reshape of both the intestinal microbiota and plasma protein glycosylation profile, suggesting intriguing pathological mechanisms underlying AGEs-induced metabolic derangements
- …