5,337 research outputs found
Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots
Identifying the molecular mechanisms underlying tolerance to abiotic stresses is important in crop breeding. A comprehensive understanding of the gene families associated with drought tolerance is therefore highly relevant. NAC transcription factors form a large plant-specific gene family involved in the regulation of tissue development and responses to biotic and abiotic stresses. The main goal of this study was to set up a framework of orthologous groups determined by an expert sequence comparison of NAC genes from both monocots and dicots. In order to clarify the orthologous relationships among NAC genes of different species, we performed an in-depth comparative study of four divergent taxa, in dicots and monocots, whose genomes have already been completely sequenced: Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa. Due to independent evolution, NAC copy number is highly variable in these plant genomes. Based on an expert NAC sequence comparison, we propose forty orthologous groups of NAC sequences that were probably derived from an ancestor gene present in the most recent common ancestor of dicots and monocots. These orthologous groups provide a curated resource for large-scale protein sequence annotation of NAC transcription factors. The established orthology relationships also provide a useful reference for NAC function studies in newly sequenced genomes such as M. acuminata and other plant species
Ultrasound-induced emulsification of subcritical carbon dioxide/water with and without surfactant as a strategy for enhanced mass transport
Pulsed ultrasound was used to disperse a biphasic mixture of CO2/H2O in a 1 dm3 high-pressure reactor at 30 °C/80 bar. A view cell positioned in-line with the sonic vessel allowed observation of a turbid emulsion which lasted approximately 30 min after ceasing sonication. Within the ultrasound reactor, simultaneous CO2-continuous and H2O-continuous environments were identified. The hydrolysis of benzoyl chloride was employed to show that at similar power intensities, comparable initial rates (1.6 ± 0.3 Ă 10â3 sâ1 at 95 W cmâ2) were obtained with those reported for a 87 cm3 reactor (1.8 ± 0.2 Ă 10â3 sâ1 at 105 W cmâ2), demonstrating the conservation of the physical effects of ultrasound in high-pressure systems (emulsification induced by the action of acoustic forces near an interface). A comparison of benzoyl chloride hydrolysis rates and benzaldehyde mass transport relative to the non-sonicated, âsilentâ cases confirmed that the application of ultrasound achieved reaction rates which were over 200 times faster, by reducing the mass transport resistance between CO2 and H2O. The versatility of the system was further demonstrated by ultrasound-induced hydrolysis in the presence of the polysorbate surfactant, Tween, which formed a more uniform CO2/H2O emulsion that significantly increased benzoyl chloride hydrolysis rates. Finally, pulse rate was employed as a means of slowing down the rate of hydrolysis, further illustrating how ultrasound can be used as a valuable tool for controlling reactions in CO2/H2O solvent mixtures
Entangled symmetric states of N qubits with all positive partial transpositions
From both theoretical and experimental points of view symmetric states
constitute an important class of multipartite states. Still, entanglement
properties of these states, in particular those with positive partial
transposition (PPT), lack a systematic study. Aiming at filling in this gap, we
have recently affirmatively answered the open question of existence of
four-qubit entangled symmetric states with positive partial transposition and
thoroughly characterized entanglement properties of such states [J. Tura et
al., Phys. Rev. A 85, 060302(R) (2012)] With the present contribution we
continue on characterizing PPT entangled symmetric states. On the one hand, we
present all the results of our previous work in a detailed way. On the other
hand, we generalize them to systems consisting of arbitrary number of qubits.
In particular, we provide criteria for separability of such states formulated
in terms of their ranks. Interestingly, for most of the cases, the symmetric
states are either separable or typically separable. Then, edge states in these
systems are studied, showing in particular that to characterize generic PPT
entangled states with four and five qubits, it is enough to study only those
that assume few (respectively, two and three) specific configurations of ranks.
Finally, we numerically search for extremal PPT entangled states in such
systems consisting of up to 23 qubits. One can clearly notice regularity behind
the ranks of such extremal states, and, in particular, for systems composed of
odd number of qubits we find a single configuration of ranks for which there
are extremal states.Comment: 16 pages, typos corrected, some other improvements, extension of
arXiv:1203.371
Innovazione tecnologica e offerta di skills:una simulazione
In this paper a dynamic stochastic model is used to simulate the matching process between skills demand and supply in a segmented labor market of a typical developing area where labor market frictions are pervasive. We address the issue of the emergence of a âbadâ outcome i.e. equilibrium towards the low level of development, given adverse initial conditions. In a second step we discuss the sensitivity of the endogenous dynamics to parameters changes due to policy/institutional reforms that change the expectations of the economic agents.labor market frictions, matching process, simulation
Four-qubit entangled symmetric states with positive partial transpositions
We solve the open question of the existence of four-qubit entangled symmetric
states with positive partial transpositions (PPT states). We reach this goal
with two different approaches. First, we propose a
half-analytical-half-numerical method that allows to construct multipartite PPT
entangled symmetric states (PPTESS) from the qubit-qudit PPT entangled states.
Second, we adapt the algorithm allowing to search for extremal elements in the
convex set of bipartite PPT states [J. M. Leinaas, J. Myrheim, and E. Ovrum,
Phys. Rev. A 76, 034304 (2007)] to the multipartite scenario. With its aid we
search for extremal four-qubit PPTESS and show that generically they have ranks
(5,7,8). Finally, we provide an exhaustive characterization of these states
with respect to their separability properties.Comment: 5+4 pages, improved version, title slightly modifie
Local Unitary Classification of Arbitrary Dimensional Multipartite Pure States
We propose a practical entanglement classification scheme for general
multipartite pure states in arbitrary dimensions under local unitary
equivalence by exploiting the high order singular value decomposition technique
and local symmetries of the states. By virtue of this scheme, the method of
determining the local unitary equivalence of -qubit states proposed by Kraus
is extended to the case for arbitrary dimensional multipartite states.Comment: 10 pages; published in Phys. Rev. Let
Access coordination: group of processes
We propose a distributed algorithm for the group mutual exclusion problem in a network with no share memory whose members only communicate by messages. The proposed algorithm is composed by two players: groups and processes, groups are passive players while processes are active players. For the coordination access to the resource, each group has assigned a quorum. The groups have associated priorities in each stage, meanwhile the processes have the same level priority. An important feature is that processes have associated a time to participate in the group in each stage.Presentado en el IX Workshop Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en InformĂĄtica (RedUNCI
ConsideraçÔes sobre o ponto de colheita de manga para exportação.
bitstream/item/75991/1/ct54-2002.pd
- âŠ