107 research outputs found

    Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application

    Get PDF
    This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel

    Protein synthesis levels are increased in a subset of individuals with fragile X syndrome.

    Get PDF
    Fragile X syndrome (FXS) is a monogenic form of intellectual disability and autism spectrum disorder caused by the absence of the fragile X mental retardation protein (FMRP). In biological models for the disease, this leads to upregulated mRNA translation and as a consequence, deficits in synaptic architecture and plasticity. Preclinical studies revealed that pharmacological interventions restore those deficits, which are thought to mediate the FXS cognitive and behavioral symptoms. Here, we characterized the de novo rate of protein synthesis in patients with FXS and their relationship with clinical severity. We measured the rate of protein synthesis in fibroblasts derived from 32 individuals with FXS and from 17 controls as well as in fibroblasts and primary neurons of 27 Fmr1 KO mice and 20 controls. Here, we show that levels of protein synthesis are increased in fibroblasts of individuals with FXS and Fmr1 KO mice. However, this cellular phenotype displays a broad distribution and a proportion of fragile X individuals and Fmr1 KO mice do not show increased levels of protein synthesis, having measures in the normal range. Because the same Fmr1 KO animal measures in fibroblasts predict those in neurons we suggest the validity of this peripheral biomarker. Our study offers a potential explanation for the comprehensive drug development program undertaken thus far yielding negative results and suggests that a significant proportion, but not all individuals with FXS, may benefit from the reduction of excessive levels of protein synthesis

    A germanium photodetector array for the near infrared monolithically integrated with silicon CMOS readout electronics

    No full text
    Near infrared (NIR) detectors, operating in the 1.3-1.6 mum region, are key elements in a number of applications ranging from optical communications to remote sensing. InGaAs and Ge are currently the materials of choice for the fabrication of NIR detectors due to their good absorption and transport properties. However, as the required performances increase (bit-rate in optical communications, number of pixels in imaging, etc.), it becomes more and more important to reduce the separation from detectors and driving/biasing and amplifying electronics, by integrating the two components on the same chip. We demonstrate an array of NIR detectors monolithically integrated with standard silicon CMOS readout electronics. The employed low temperature process allowed the integration of the detectors as the last step of chip fabrication. The integrated micro-system consists of a linear array of 120 x 120 mum(2) pixels, an analog CMOS multiplexer and a transimpedance amplifier. The chip exhibits a good photoresponse in the NIR, with responsivities as high as 43 V/W at 1.3 mum, dark currents of 1 mA/cm(2) and inter-pixel cross-talk better than -20 dB. (C) 2002 Elsevier Science B.V. All rights reserved
    corecore