4 research outputs found

    Detection Methods and Clinical Applications of Circulating Tumor Cells in Breast Cancer

    Full text link
    Circulating Tumor Cells (CTCs) are cancer cells that split away from the primary tumor and appear in the circulatory system as singular units or clusters, which was first reported by Dr. Thomas Ashworth in 1869. CTCs migrate and implantation occurs at a new site, in a process commonly known as tumor metastasis. In the case of breast cancer, the tumor cells often migrate into locations such as the lungs, brain, and bones, even during the early stages, and this is a notable characteristic of breast cancer. Survival rates have increased significantly over the past few decades because of progress made in radiology and tissue biopsy, making early detection and diagnosis of breast cancer possible. However, liquid biopsy, particularly that involving the collection of CTCs, is a non-invasive method to detect tumor cells in the circulatory system, which can be easily isolated from human plasma, serum, and other body fluids. Compared to traditional tissue biopsies, fluid sample collection has the advantages of being readily available and more acceptable to the patient. It can also detect tumor cells in blood earlier and in smaller numbers, possibly allowing for diagnosis prior to any tumor detection using imaging methods. Because of the scarcity of CTCs circulating in blood vessels (only a few CTCs among billions of erythrocytes and leukocytes), thorough but accurate detection methods are particularly important for further clinical applications

    Genetic and clinical characteristics of ZNF408-related familial exudative vitreoretinopathy

    No full text
    Objective To analyze the clinical and genetic characteristics of zinc finger protein 408 ( ZNF408 )-related familial exudative vitreoretinopathy (FEVR) in a Chinese cohort. Methods Ninety families from Chongqing and 16 families from Xinjiang were selected according to fundus lesion characteristics. Peripheral venous blood was collected from patients and their families; genomic DNA was extracted for whole exome sequencing. Relationships between genotype and phenotype in patients with ZNF408 -related FEVR were analyzed. Results ZNF408 variants were detected in three patients (2.83%, 3/106). ZNF408 variants in these three probands were all missense mutations at novel sites. One proband had a ZNF408 and LRP5 double-gene variant, and two probands had ZNF408 single-gene variants. Patients with double-gene variants did not display more severe clinical manifestations. Conclusions This study expands the spectrum of known ZNF408 variants and confirms that ZNF408 variants can cause FEVR. Most variants detected in this study have not been reported in the literature and are suspected pathogenic variants of FEVR. In patients with FEVR, phenotype and genotype do not necessarily display a direct one-to-one relationship
    corecore