12 research outputs found

    Impaired Bone Mineral Density in Pediatric Patients with Chronic Graft-Versus-Host Disease

    No full text
    Pediatric allogeneic hematopoietic stem cell transplantation (AHSCT) recipients with chronic graft-versus-host disease (cGVHD) are at high risk for endocrinopathies, particularly impaired bone mineral density (BMD). However, rates of BMD impairment in pediatric AHSCT recipients with cGVHD have not been well documented. We report 33 patients with cGVHD who were referred to the National Institutes of Health (NIH) for the Natural History of Clinical and Biological Factors Determining Outcomes in Chronic Graft-versus-Host Disease Study (NCT 0092235) and underwent formal BMD assessment via dual-energy X-ray absorptiometry (DEXA). Not surprisingly, we found much higher rates of BMD impairment than previously reported for pediatric AHSCT recipients who were not stratified by the presence or absence of cGVHD. Most of these patients (73%) had a z-score ≤-2 in at least 1 anatomic site. Although we expected the rate to be higher than that observed for pediatric AHSCT recipients in studies that did not analyze patients with cGVHD separately, this rate is nonetheless extremely high. Furthermore, the overall rate of occult vertebral compression fractures (VCFs) in our cohort was 17%, and the rate was 23% in patients with at least 1 z-score of ≤-2. The rates of BMD impairment and VCF in our pediatric cohort were significantly higher than those seen in the adult AHSCT recipients who were concurrently enrolled on the same study at the NIH and had similar cGVHD severity. We found that older age at cGVHD diagnosis and a greater number of systemic therapies were associated with occult VCF. Moreover, the intensity of current immunosuppression negatively impacted lumbar spine and total hip BMD in this cohort. Our study, although limited by small patient numbers and lack of a control AHSCT recipient group without cGVHD, indicates that children with cGVHD are at a greater risk for BMD impairment than previously appreciated. Given the rising incidence of cGVHD in AHSCT recipients and our findings, we recommend that pre-AHSCT DEXA be incorporated into routine pediatric pretransplantation screening studies. A baseline DEXA study could facilitate longitudinal monitoring of BMD in children, who may be more susceptible than adults to the negative effects of AHSCT on BMD. In addition, given the high risk of BMD impairment in pediatric AHSCT recipients with cGVHD, such patients should undergo BMD evaluation upon developing cGVHD, with continued monitoring thereafter to allow intervention before progression of the BMD impairment to its severe manifestation, VCF

    Diagnosis and Management of Tumor-Induced Osteomalacia: Perspectives from Clinical Experience

    No full text
    PurposeTumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome of abnormal phosphate and vitamin D metabolism caused by typically small endocrine tumors that secrete fibroblast growth factor 23 (FGF23). TIO is characterized clinically by progressive musculoskeletal pain, fatigue, proximal muscle weakness, and multiple fractures, leading to long-term disability. Misdiagnosis and delayed diagnosis are common because of the nonspecific symptoms, and several years may elapse before patients receive an accurate diagnosis and appropriate treatment. Thus, it is vital that awareness of the appropriate recognition and management of TIO is increased among healthcare professionals who may encounter patients with suspected TIO.MethodsA roundtable meeting was held on 10 January 2020 in Dallas, TX, USA, to gather perspectives on the diagnosis and treatment of TIO. The following topics were considered: clinical presentation, patient history, differential diagnosis, laboratory assessment, imaging, venous sampling, and treatment.ResultsThis report provides a summary of our collective experiences in the management of TIO.Main conclusionsLaboratory tests are mandatory to expedite TIO diagnosis and should include measurement of fasting serum phosphorus, renal phosphate reabsorption, serum 1,25-dihydroxyvitamin D, and serum FGF23 levels. Functional and anatomical imaging are essential to locate the FGF23-secreting tumor(s) causing TIO. Surgical resection is often a curative treatment when the tumor can be localized; however, better management of patients who cannot be operated on with targeted therapies is needed. Further efforts to increase awareness of TIO within the medical community, and education on recommended diagnostic and treatment pathways are required to improve the management of this debilitating disease

    Patients with McCune-Albright syndrome have a broad spectrum of abnormalities in the gastrointestinal tract and pancreas

    No full text
    McCune-Albright Syndrome (MAS) is a rare sporadic syndrome caused by post-zygotic mutations in the GNAS oncogene, leading to constitutional mosaicism for these alterations. Somatic activating GNAS mutations also commonly occur in several gastrointestinal and pancreatic neoplasms, but the spectrum of abnormalities in these organs in patients with MAS has yet to be systematically described. We report comprehensive characterization of the upper gastrointestinal tract in seven patients with MAS and identify several different types of polyps, including gastric heterotopia/metaplasia (7/7), gastric hyperplastic polyps (5/7), fundic gland polyps (2/7), and a hamartomatous polyp (1/7). In addition, one patient had an unusual adenomatous lesion at the gastroesophageal junction with high-grade dysplasia. In the pancreas, all patients had endoscopic ultrasound findings suggestive of intraductal papillary mucinous neoplasm (IPMN), but only two patients met the criteria for surgical intervention. Both of these patients had IPMNs at resection, one with low-grade dysplasia and one with high-grade dysplasia. GNAS mutations were identified in the majority of lesions analyzed, including both IPMNs and the adenomatous lesion from the gastroesophageal junction. These studies suggest that there is a broad spectrum of abnormalities in the gastrointestinal tract and pancreas in patients with MAS and that patients with MAS should be evaluated for gastrointestinal pathology, some of which may warrant clinical intervention due to advanced dysplasia

    Patients with McCune-Albright syndrome have a broad spectrum of abnormalities in the gastrointestinal tract and pancreas

    No full text
    McCune-Albright Syndrome (MAS) is a rare sporadic syndrome caused by post-zygotic mutations in the GNAS oncogene, leading to constitutional mosaicism for these alterations. Somatic activating GNAS mutations also commonly occur in several gastrointestinal and pancreatic neoplasms, but the spectrum of abnormalities in these organs in patients with MAS has yet to be systematically described. We report comprehensive characterization of the upper gastrointestinal tract in seven patients with MAS and identify several different types of polyps, including gastric heterotopia/metaplasia (7/7), gastric hyperplastic polyps (5/7), fundic gland polyps (2/7), and a hamartomatous polyp (1/7). In addition, one patient had an unusual adenomatous lesion at the gastroesophageal junction with high-grade dysplasia. In the pancreas, all patients had endoscopic ultrasound findings suggestive of intraductal papillary mucinous neoplasm (IPMN), but only two patients met the criteria for surgical intervention. Both of these patients had IPMNs at resection, one with low-grade dysplasia and one with high-grade dysplasia. GNAS mutations were identified in the majority of lesions analyzed, including both IPMNs and the adenomatous lesion from the gastroesophageal junction. These studies suggest that there is a broad spectrum of abnormalities in the gastrointestinal tract and pancreas in patients with MAS and that patients with MAS should be evaluated for gastrointestinal pathology, some of which may warrant clinical intervention due to advanced dysplasia

    Optimizing a therapeutic humanized follicle-stimulating hormone-blocking antibody formulation by protein thermal shift assay

    No full text
    Biopharmaceutical products are formulated using several Food and Drug Administration (FDA) approved excipients within the inactive ingredient limit to maintain their storage stability and shelf life. Here, we have screened and optimized different sets of excipient combinations to yield a thermally stable formulation for the humanized follicle-stimulating hormone (FSH)-blocking antibody, MS-Hu6. We used a protein thermal shift assay in which rising temperatures resulted in the maximal unfolding of the protein at the melting temperature (Tm ). To determine the buffer and pH for a stable solution, four different buffers with a pH range from 3 to 8 were screened. This resulted in maximal Tm s at pH 5.62 for Fab in phosphate buffer and at pH 6.85 for Fc in histidine buffer. Upon testing a range of salt concentrations, MS-Hu6 was found to be more stable at lower concentrations, likely due to reduced hydrophobic effects. Molecular dynamics simulations revealed a higher root-mean-square deviation with 1 mM than with 100 mM salt, indicating enhanced stability, as noted experimentally. Among the stabilizers tested, Tween 20 was found to yield the highest Tm and reversed the salt effect. Among several polyols/sugars, trehalose and sucrose were found to produce higher thermal stabilities. Finally, binding of recombinant human FSH to MS-Hu6 in a final formulation (20 mM phosphate buffer, 1 mM NaCl, 0.001% w/v Tween 20, and 260 mM trehalose) resulted in a thermal shift (increase in Tm ) for the Fab, but expectedly not in the Fc domain. Given that we used a low dose of MS-Hu6 (1 μM), the next challenge would be to determine whether 100-fold higher, industry-standard concentrations are equally stable

    First-in-class humanized FSH blocking antibody targets bone and fat.

    Get PDF
    Blocking the action of FSH genetically or pharmacologically in mice reduces body fat, lowers serum cholesterol, and increases bone mass, making an anti-FSH agent a potential therapeutic for three global epidemics: obesity, osteoporosis, and hypercholesterolemia. Here, we report the generation, structure, and function of a first-in-class, fully humanized, epitope-specific FSH blocking antibody with
    corecore