16 research outputs found

    Collision induced desorption and dissociation of O2 chemisorbed on Ag(001)

    No full text
    We have investigated desorption and dissociation of O-2 chemisorbed on Ag(001) induced by collision with hyperthermal Xe and Ar atoms by high resolution electron energy loss spectroscopy and supersonic molecular beam technique. The cross section for both processes increases rapidly both as a function of angle of incidence and of total impact energy of the inert gas atom. While the increase with energy is expected, the increase with the angle is somewhat surprising arid is sensibly larger than observed for previously investigated systems. The cross section for desorption decreases moreover with coverage. In the limit of high impact energy and high coverage its value is always larger than the one for dissociation. The branching ratio between the two processes depends thereby on energy and angle of incidence of the inert gas atom. Atomic oxygen is not removed under any impact condition, because of its larger binding energy. In order to explain the experimental results, molecular dynamics simulations have been performed using a simple model including multiple scattering, We find that the angular dependence of the cross section is determined by surface corrugation and by multiple scattering which suppresses desorption at normal incidence while the energetic threshold is determined by energy loss to the substrat

    Thermochemical characterization of Ca4La6(SiO4)6(OH)2 a synthetic La- and OH-analogous of britholite: implication for monazite and LREE apatites stability

    No full text
    In this contribution, monazite (LREEPO4) solubility is addressed in a chemical system involving REE-bearing hydroxylapatite, (Ca,LREE)10(PO4,SiO4)6(OH)2. For this purpose, a synthetic (La)- and (OH)-analogous of britholite, Ca4La6(SiO4)6(OH)2, was synthesised and its thermodynamic properties were measured. Formation enthalpy of –14,618.4 ± 31.0 kJ·mol–1 was obtained by high-temperature drop-solution calorimetry using a Tian-calvet twin calorimeter (Bochum, Germany) at 975 K using lead borate as solvent. Heat capacities (Cp) were measured in the 143–323 K and 341–623 K ranges with an automated Perkin-Elmer DSC 7. For calculations of solubility diagrams at 298 K, the GEMS program was used because it takes into account solid solutions. In conditions representative of those expected in nuclear waste disposal, calculations show that La-monazite is stable from pH = 4 to 9 with a minimum of solubility at pH = 7. La-bearing hydroxylapatite precipitates at pH > 7 with a nearly constant composition of 99% hydroxylapatite and 1% La-britholite. Each mineral buffers solution at extremely low lanthanum concentrations (log{La} = 10–10–10–15 mol·kg–1 for pH = 4 to 13). In terms of chemical durability, both La-monazite and La-rich apatite present low solubility, a requisite property for nuclear-waste forms

    Negative ion resonances of O<sub>2</sub> adsorbed on Ag surfaces

    No full text
    This article gathers together a collection of recent experimental studies of the adsorption of oxygen on (001), (110) and (111) crystal surfaces of silver with special emphasis on the negative ion states of this model system for oxygen adsorption. These investigations were performed in a network entitled ‘Negative ion resonances of adsorbed molecules’ supported financially by the European Union within the ‘Human capital and mobility programme’. The kinetics and thermodynamics of adsorption are investigated by measuring the sticking coefficient and by thermal desorption spectroscopy (TDS). The vibrational spectra provided by high-resolution electron energy loss spectroscopy (HREELS) are used to analyse the adsorbed species (physisorbed and chemisorbed) in the case of O2 on Ag(110) and on Ag(111). The mechanisms of inelastic electron scattering by adsorbed O2 are further investigated with special reference to the negative ion resonances (NIRs), formed by electron capture, which are involved in the electron–molecule collision process

    Negative Ion Resonances of O2 adsorbed on Ag Surfaces

    No full text
    This article gathers together a collection of recent experimental studies of the adsorption of oxygen on (001), (110) and (111) crystal surfaces of silver with special emphasis on the negative ion states of this model system for oxygen adsorption. These investigations were performed in a network entitled 'Negative ion resonances of adsorbed molecules' supported financially by the European Union within the 'Human capital and mobility programme'. The kinetics and thermodynamics of adsorption are investigated by measuring the sticking coefficient and by thermal desorption spectroscopy (TDS). The vibrational spectra provided by high-resolution electron energy loss spectroscopy (HREELS) are used to analyse the adsorbed species (physisorbed and chemisorbed) in the case of O-2 On Ag(110) and on Ag(111). The mechanisms of Inelastic electron scattering by adsorbed O-2 are further investigated with special reference to the negative ion resonances (NIRs), formed by electron capture, which are involved in the electron-molecule collision process
    corecore