114 research outputs found

    High Pressure Insulator-Metal Transition in Molecular Fluid Oxygen

    Full text link
    We report the first experimental evidence for a metallic phase in fluid molecular oxygen. Our electrical conductivity measurements of fluid oxygen under dynamic quasi-isentropic compression show that a non-metal/metal transition occurs at 3.4 fold compression, 4500 K and 1.2 Mbar. We discuss the main features of the electrical conductivity dependence on density and temperature and give an interpretation of the nature of the electrical transport mechanisms in fluid oxygen at these extreme conditions.Comment: RevTeX, 4 figure

    Entropy-Dominated Dissipation in Sapphire Shock-Compressed up to 400 GPa (4 Mbar)

    Full text link
    Sapphire (single-crystal Al2O3) is a representative Earth material and is used as a window and/or anvil in shock experiments. Pressure, for example, at the core-mantle boundary is about 130 gigapascals (GPa). Defects induced by 100-GPa shock waves cause sapphire to become opaque, which precludes measuring temperature with thermal radiance. We have measured wave profiles of sapphire crystals with several crystallographic orientations at shock pressures of 16, 23, and 86 GPa. At 23 GPa plastic-shock rise times are generally quite long (~100 ns) and their values depend sensitively on the direction of shock propagation in the crystal lattice. The long rise times are probably caused by the high strength of inter-atomic interactions in the ordered three-dimensional sapphire lattice. Our wave profiles and recent theoretical and laser-driven experimental results imply that sapphire disorders without significant shock heating up to about 400 GPa, above which Al2O3 is amorphous and must heat. This picture suggests that the characteristic shape of shock compression curves of many Earth materials at 100 GPa pressures is caused by a combination of entropy and temperature.Comment: 12 pages, 4 figure

    Time-resolved measurements of fast electron recirculation for relativistically intense femtosecond scale laser-plasma interactions

    Get PDF
    A key issue in realising the development of a number of applications of high-intensity lasers is the dynamics of the fast electrons produced and how to diagnose them. We report on measurements of fast electron transport in aluminium targets in the ultra-intense, short-pulse (<50 fs) regime using a high resolution temporally and spatially resolved optical probe. The measurements show a rapidly (≈0.5c) expanding region of Ohmic heating at the rear of the target, driven by lateral transport of the fast electron population inside the target. Simulations demonstrate that a broad angular distribution of fast electrons on the order of 60° is required, in conjunction with extensive recirculation of the electron population, in order to drive such lateral transport. These results provide fundamental new insight into fast electron dynamics driven by ultra-short laser pulses, which is an important regime for the development of laser-based radiation and particle sources

    Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    Get PDF
    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “high-foot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10[superscript 16] neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.United States. Dept. of Energy (Lawrence Livermore National Laboratory Contract DE-AC52-07NA27344

    Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    Get PDF
    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165  μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating
    corecore