14 research outputs found

    Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling

    Get PDF
    The sugar sensing and carbon catabolite repression in Baker’s yeast Saccharomyces cerevisiae is governed by three major signaling pathways that connect carbon source recognition with transcriptional regulation. Here we present a screening method based on a non-invasive in vivo reporter system for real-time, single-cell screening of the sugar signaling state in S. cerevisiae in response to changing carbon conditions, with a main focus on the response to glucose and xylose.ResultsThe artificial reporter system was constructed by coupling a green fluorescent protein gene (yEGFP3) downstream of endogenous yeast promoters from the Snf3p/Rgt2p, SNF1/Mig1p and cAMP/PKA signaling pathways: HXT1p/2p/4p; SUC2p, CAT8p; TPS1p/2p and TEF4p respectively. A panel of eight biosensors strains was generated by single copy chromosomal integration of the different constructs in a W303-derived strain. The signaling biosensors were validated for their functionality with flow cytometry by comparing the fluorescence intensity (FI) response in the presence of high or nearly depleted glucose to the known induction/repression conditions of the eight different promoters. The FI signal correlated with the known patterns of the selected promoters while maintaining a non-invasive property on the cellular phenotype, as was demonstrated in terms of growth, metabolites and enzyme activity.ConclusionsOnce verified, the sensors were used to evaluate the signaling response to varying conditions of extracellular glucose, glycerol and xylose by screening in 96-well microtiter plates. We show that these yeast strains, which do not harbor any recombinant pathways for xylose utilization, are lacking a signaling response for extracellular xylose. However, for the HXT2p/4p sensors, a shift in the flow cytometry population dynamics indicated that internalized xylose does affect the signaling. These results suggest that the previously observed effects of this pentose on the S. cerevisiae physiology and gene regulation can be attributed to xylose and not only to a lack of glucose

    Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants

    No full text
    Background: There have been many successful strategies to implement xylose metabolism in Saccharomyces cerevisiae, but no effort has so far enabled xylose utilization at rates comparable to that of glucose (the preferred sugar of this yeast). Many studies have pointed towards the engineered yeast not sensing that xylose is a fermentable carbon source despite growing and fermenting on it, which is paradoxical. We have previously used fluorescent biosensor strains to in vivo monitor the sugar signalome in yeast engineered with xylose reductase and xylitol dehydrogenase (XR/XDH) and have established that S. cerevisiae senses high concentrations of xylose with the same signal as low concentration of glucose, which may explain the poor utilization. Results: In the present study, we evaluated the effects of three deletions (ira2δ, isu1δ and hog1δ) that have recently been shown to display epistatic effects on a xylose isomerase (XI) strain. Through aerobic and anaerobic characterization, we showed that the proposed effects in XI strains were for the most part also applicable in the XR/XDH background. The ira2δisu1δ double deletion led to strains with the highest specific xylose consumption- and ethanol production rates but also the lowest biomass titre. The signalling response revealed that ira2δisu1δ changed the low glucose-signal in the background strain to a simultaneous signalling of high and low glucose, suggesting that engineering of the signalome can improve xylose utilization. Conclusions: The study was able to correlate the previously proposed beneficial effects of ira2δ, isu1δ and hog1δ on S. cerevisiae xylose uptake, with a change in the sugar signalome. This is in line with our previous hypothesis that the key to resolve the xylose paradox lies in the sugar sensing and signalling networks. These results indicate that the future engineering targets for improved xylose utilization should probably be sought not in the metabolic networks, but in the signalling ones

    Assessing the effect of d-xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation

    No full text
    One of the challenges of establishing an industrially competitive process to ferment lignocellulose to value-added products using Saccharomyces cerevisiae is to get efficient mixed sugar fermentations. Despite successful metabolic engineering strategies, the xylose assimilation rates of recombinant S. cerevisiae remain significantly lower than for the preferred carbon source, glucose. Previously, we established a panel of in vivo biosensor strains (TMB371X) where different promoters (HXT1/2/4p; SUC2p, CAT8p; TPS1p/2p, TEF4p) from the main sugar signaling pathways were coupled with the yEGFP3 gene, and observed that wild-type S. cerevisiae cannot sense extracellular xylose. Here, we expand upon these strains by adding a mutated galactose transporter (GAL2-N376F) with improved xylose affinity (TMB372X), and both the transporter and an oxidoreductase xylose pathway (TMB375X). On xylose, the TMB372X strains displayed population heterogeneities, which disappeared when carbon starvation was relieved by the addition of the xylose assimilation pathway (TMB375X). Furthermore, the signal in the TMB375X strains on high xylose (50 g/L) was very similar to the signal recorded on low glucose (≤5 g/L). This suggests that intracellular xylose triggers a similar signal to carbon limitation in cells that are actively metabolizing xylose, in turn causing the low assimilation rates

    D-xylose sensing in saccharomyces cerevisiae : Insights from D-glucose signaling and native D-xylose utilizers

    No full text
    Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker’s yeast Saccharomyces cerevisiae for the utilization of D-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment D-xylose to ethanol at high yields, the consumption rate of D-xylose is still significantly lower than that of its preferred sugar D-glucose. In mixed D-glucose/D-xylose cultivations, D-xylose is only utilized after D-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on D-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to D-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to D-glucose (the preferred sugar of the yeast). Using the Dglucose case as a point of reference, we then proceed to discuss the known signaling response to Dxylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits

    Using phosphoglucose isomerase-deficient (pgi1Δ) Saccharomyces cerevisiae to map the impact of sugar phosphate levels on d-glucose and d-xylose sensing

    No full text
    Abstract Background Despite decades of engineering efforts, recombinant Saccharomyces cerevisiae are still less efficient at converting d-xylose sugar to ethanol compared to the preferred sugar d-glucose. Using GFP-based biosensors reporting for the three main sugar sensing routes, we recently demonstrated that the sensing response to high concentrations of d-xylose is similar to the response seen on low concentrations of d-glucose. The formation of glycolytic intermediates was hypothesized to be a potential cause of this sensing response. In order to investigate this, glycolysis was disrupted via the deletion of the phosphoglucose isomerase gene (PGI1) while intracellular sugar phosphate levels were monitored using a targeted metabolomic approach. Furthermore, the sugar sensing of the PGI1 deletants was compared to the PGI1-wildtype strains in the presence of various types and combinations of sugars. Results Metabolomic analysis revealed systemic changes in intracellular sugar phosphate levels after deletion of PGI1, with the expected accumulation of intermediates upstream of the Pgi1p reaction on d-glucose and downstream intermediates on d-xylose. Moreover, the analysis revealed a preferential formation of d-fructose-6-phosphate from d-xylose, as opposed to the accumulation of d-fructose-1,6-bisphosphate that is normally observed when PGI1 deletants are incubated on d-fructose. This may indicate a role of PFK27 in d-xylose sensing and utilization. Overall, the sensing response was different for the PGI1 deletants, and responses to sugars that enter the glycolysis upstream of Pgi1p (d-glucose and d-galactose) were more affected than the response to those entering downstream of the reaction (d-fructose and d-xylose). Furthermore, the simultaneous exposure to sugars that entered upstream and downstream of Pgi1p (d-glucose with d-fructose, or d-glucose with d-xylose) resulted in apparent synergetic activation and deactivation of the Snf3p/Rgt2p and cAMP/PKA pathways, respectively. Conclusions Overall, the sensing assays indicated that the previously observed d-xylose response stems from the formation of downstream metabolic intermediates. Furthermore, our results indicate that the metabolic node around Pgi1p and the level of d-fructose-6-phosphate could represent attractive engineering targets for improved d-xylose utilization

    Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway

    No full text
    The most prevalent xylose-assimilating pathways in recombinant Saccharomyces cerevisiae, i.e. the xylose isomerase (XI) and the xylose reductase/xylitol dehydrogenase (XR/XDH) pathways, channel the carbon flux through the pentose phosphate pathway and further into glycolysis. In contrast, the oxidative and non-phosphorylative bacterial Weimberg pathway channels the xylose carbon through five steps into the metabolic node α-ketoglutarate (αKG) that can be utilized for growth or diverted into production of various metabolites. In the present study, steps preventing the establishment of a functional Weimberg pathway in S. cerevisiae were identified. Using an original design where a S. cerevisiae strain was expressing the essential four genes of the Caulobacter crescentus pathway (xylB, xylD, xylX, xylA) together with a deletion of FRA2 gene to upregulate the iron-sulfur metabolism, it was shown that the C. crescentus αKG semialdehyde dehydrogenase, XylA was not functional in S. cerevisiae. When replaced by the recently described analog from Corynebacterium glutamicum, KsaD, significantly higher in vitro activity was observed but the strain did not grow on xylose. Adaptive laboratory evolution (ALE) on a xylose/glucose medium on this strain led to a loss of XylB, the first step of the Weimberg pathway, suggesting that ALE favored minimizing the inhibiting xylonate accumulation by restricting the upper part of the pathway. Therefore three additional gene copies of the lower Weimberg pathway (XylD, XylX and KsaD) were introduced. The resulting S. cerevisiae strain (ΔΔfra2, xylB, 4x (xylD-xylX-ksaD)) was able to generate biomass from xylose and Weimberg pathway intermediates were detected. To our knowledge this is the first report of a functional complete Weimberg pathway expressed in fungi. When optimized this pathway has the potential to channel xylose towards value-added specialty chemicals such as dicarboxylic acids and diols

    Anaerobic batch fermentation profiles of a glucose/xylose mixture.

    No full text
    <p>Fermentation experiments were performed using 2× YNB medium containing 20 g L<sup>−1</sup> glucose and 50 g L<sup>−1</sup> xylose. Figures show representative values from one experiment out of two biological duplicates using TMB3492 (Hxk2p-wt) (red) and TMB3493 (Hxk2p-Y) (turquoise). <b>A</b>) Fermentation profiles of glucose (▪) and xylose (•) consumption and production of ethanol (♦). <b>B</b>) Fermentation profiles of xylitol (•), glycerol (♦) and biomass (▴) formation.</p

    Selection of Hxk2p variants.

    No full text
    <p>The selection of Hxk2p variants was performed in anaerobic glucose limited chemostat cultivation with feed containing 5 g L<sup>−1</sup> glucose and 50 g L<sup>−1</sup> xylose. After 96 h of continuous cultivation of TMB3463 transformed with the <i>HXK2</i>-library at <i>D</i> = 0.072 h<sup>−1</sup>, the dilution rate was increased to <i>D</i> = 0.40 h<sup>−1</sup> (indicated as <i>t</i> = 0 h). During the washout the specific growth rate was calculated from the equation d ln(OD) d<i>t</i><sup>−1</sup> =  <i>μ</i><sub>max</sub>−<i>D</i>. The natural logarithm of OD is shown as red squares (▪). The washout profile displays two growth phases and the switching point occurs when the residual glucose concentration (▴) exceeds 3 g L<sup>−1</sup>. After 10 h the glucose concentration stabilized at 4 g L<sup>−1</sup> which reduced the selection pressure by inhibiting the uptake of xylose and thus slowed down the washout of cells. The measured accumulation of glucose was less than the theoretical (dashed line), calculated according to <i>S</i> =  <i>S</i><sub>in</sub>+(<i>S</i><sub>0</sub>−<i>S</i><sub>in</sub>)·e<sup>(−<i>D</i>·<i>t</i>)</sup>, showing that the consumption was not negligible.</p

    Specific glucose phosphorylating activity during xylose-induced inactivation of Hxk2p-wt and Hxk2p-Y.

    No full text
    <p>Specific glucose phosphorylating activity (bars) in strains TMB3466 (Hxk2p-wt) (red colour) and TMB3467 (Hxk2p-Y) (turquoise colour) in anaerobic glucose-limited chemostat cultivations. At steady state (s.s.) on glucose (Glc) the two strains exhibited similar activity but during the accumulation of xylose (Xyl; •) the wild-type enzyme became inhibited faster than the variant. At steady state in the presence of xylose the variant had 64% higher specific activity compared with the wild-type. Specific activities were determined from duplicate biological experiments. At steady state conditions two different samples were collected with at least 2.5 volume changes in between.</p
    corecore