66 research outputs found

    Hierarchically Structured Reinforcement Learning for Topically Coherent Visual Story Generation

    Full text link
    We propose a hierarchically structured reinforcement learning approach to address the challenges of planning for generating coherent multi-sentence stories for the visual storytelling task. Within our framework, the task of generating a story given a sequence of images is divided across a two-level hierarchical decoder. The high-level decoder constructs a plan by generating a semantic concept (i.e., topic) for each image in sequence. The low-level decoder generates a sentence for each image using a semantic compositional network, which effectively grounds the sentence generation conditioned on the topic. The two decoders are jointly trained end-to-end using reinforcement learning. We evaluate our model on the visual storytelling (VIST) dataset. Empirical results from both automatic and human evaluations demonstrate that the proposed hierarchically structured reinforced training achieves significantly better performance compared to a strong flat deep reinforcement learning baseline.Comment: Accepted to AAAI 201

    Discourse-Aware Soft Prompting for Text Generation

    Full text link
    Current efficient fine-tuning methods (e.g., adapters, prefix-tuning, etc.) have optimized conditional text generation via training a small set of extra parameters of the neural language model, while freezing the rest for efficiency. While showing strong performance on some generation tasks, they don't generalize across all generation tasks. We show that soft-prompt based conditional text generation can be improved with simple and efficient methods that simulate modeling the discourse structure of human written text. We investigate two design choices: First, we apply \textit{hierarchical blocking} on the prefix parameters to simulate a higher-level discourse structure of human written text. Second, we apply \textit{attention sparsity} on the prefix parameters at different layers of the network and learn sparse transformations on the softmax-function. We show that structured design of prefix parameters yields more coherent, faithful and relevant generations than the baseline prefix-tuning on all generation tasks
    • …
    corecore