21 research outputs found
The role of quantum coherence in non-equilibrium entropy production
Thermodynamic irreversibility is well characterized by the entropy production arising from non-equilibrium quantum processes. We show that the entropy production of a quantum system undergoing open-system dynamics can be formally split into a term that only depends on population unbalances, and one that is underpinned by quantum coherences. This allows us to identify a genuine quantum contribution to the entropy production in non-equilibrium quantum processes. We discuss how these features emerge both in Lindblad-Davies differential maps and finite maps subject to the constraints of thermal operations. We also show how this separation naturally leads to two independent entropic conservation laws for the global system-environment dynamics, one referring to the redistribution of populations between system and environment and the other describing how the coherence initially present in the system is distributed into local coherences in the environment and non-local coherences in the system-environment state. Finally, we discuss how the processing of quantum coherences and the incompatibility of non-commuting measurements leads to fundamental limitations in the description of quantum trajectories and fluctuation theorems
Nonclassical correlation in NMR quadrupolar systems
The existence of quantum correlation (as revealed by quantum discord), other
than entanglement and its role in quantum-information processing (QIP), is a
current subject for discussion. In particular, it has been suggested that this
nonclassical correlation may provide computational speedup for some quantum
algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been
successfully used as a test bench for many QIP implementations, although it has
also been continuously criticized for not presenting entanglement in most of
the systems used so far. In this paper, we report a theoretical and
experimental study on the dynamics of quantum and classical correlations in an
NMR quadrupolar system. We present a method for computing the correlations from
experimental NMR deviation-density matrices and show that, given the action of
the nuclear-spin environment, the relaxation produces a monotonic time decay in
the correlations. Although the experimental realizations were performed in a
specific quadrupolar system, the main results presented here can be applied to
whichever system uses a deviation-density matrix formalism.Comment: Published versio
Photonic entanglement with accelerated light
Accelerated light has been demonstrated with laser light and diffraction.
Within the diffracting field it is possible to identify a portion that carries
most of the beam energy, which propagates in a curved trajectory as it would
have been accelerated by a gravitational field for instance. Here, we analyze
the effects of this kind of acceleration over the entanglement between twin
beams produced in spontaneous parametric down-conversion. Our results show that
acceleration does not affect entanglement significantly, under ideal
conditions. The optical scheme introduced can be useful in the understanding of
processes in the boundary between gravitation and quantum physics.Comment: 5 pages, 3 figure
Quantum Discord in a spin-1/2 transverse XY Chain Following a Quench
We report a study on the zero-temperature quantum discord as a measure of
two-spin correlation of a transverse XY spin chain following a quench across a
quantum critical point and investigate the behavior of mutual information,
classical correlations and hence of discord in the final state as a function of
the rate of quenching. We show that though discord vanishes in the limit of
very slow as well as very fast quenching, it exhibits a peak for an
intermediate value of the quenching rate. We show that though discord and also
the mutual information exhibit a similar behavior with respect to the quenching
rate to that of concurrence or negativity following an identical quenching,
there are quantitative differences. Our studies indicate that like concurrence,
discord also exhibits a power law scaling with the rate of quenching in the
limit of slow quenching though it may not be expressible in a closed power law
form. We also explore the behavior of discord on quenching linearly across a
quantum multicritical point (MCP) and observe a scaling similar to that of the
defect density.Comment: 6 pages, 5 figure
Algebraic characterization of X-states in quantum information
A class of two-qubit states called X-states are increasingly being used to
discuss entanglement and other quantum correlations in the field of quantum
information. Maximally entangled Bell states and "Werner" states are subsets of
them. Apart from being so named because their density matrix looks like the
letter X, there is not as yet any characterization of them. The su(2) X su(2) X
u(1) subalgebra of the full su(4) algebra of two qubits is pointed out as the
underlying invariance of this class of states. X-states are a seven-parameter
family associated with this subalgebra of seven operators. This recognition
provides a route to preparing such states and also a convenient algebraic
procedure for analytically calculating their properties. At the same time, it
points to other groups of seven-parameter states that, while not at first sight
appearing similar, are also invariant under the same subalgebra. And it opens
the way to analyzing invariant states of other subalgebras in bipartite
systems.Comment: 4 pages, 1 figur
Population size in QTL detection using quantile regression in genome‑wide association studies.
The aim of this study was to evaluate the performance of Quantile Regression (QR) in Genome-Wide Association Studies (GWAS) regarding the ability to detect QTLs (Quantitative Trait Locus) associated with phenotypic traits of interest, considering different population sizes. For this, simulated data was used, with traits of different levels of heritability (0.30 and 0.50), and controlled by 3 and 100 QTLs. Populations of 1,000 to 200 individuals were defined, with a random reduction of 100 individuals for each population. The power of detection of QTLs and the false positive rate were obtained by means of QR considering three different quantiles (0.10, 0.50 and 0.90) and also by means of the General Linear Model (GLM). In general, it was observed that the QR models showed greater power of detection of QTLs in all scenarios evaluated and a relatively low false positive rate in scenarios with a greater number of individuals. The models with the highest detection power of true QTLs at the extreme quantils (0.10 and 0.90) were the ones with the highest detection power of true QTLs. In contrast, the analysis based on the GLM detected few (scenarios with larger population size) or no QTLs in the evaluated scenarios. In the scenarios with low heritability, QR obtained a high detection power. Thus, it was verified that the use of QR in GWAS is effective, allowing the detection of QTLs associated with traits of interest even in scenarios with few genotyped and phenotyped individuals