6 research outputs found

    Neuro-Inspired Deep Neural Networks with Sparse, Strong Activations

    Full text link
    While end-to-end training of Deep Neural Networks (DNNs) yields state of the art performance in an increasing array of applications, it does not provide insight into, or control over, the features being extracted. We report here on a promising neuro-inspired approach to DNNs with sparser and stronger activations. We use standard stochastic gradient training, supplementing the end-to-end discriminative cost function with layer-wise costs promoting Hebbian ("fire together," "wire together") updates for highly active neurons, and anti-Hebbian updates for the remaining neurons. Instead of batch norm, we use divisive normalization of activations (suppressing weak outputs using strong outputs), along with implicit â„“2\ell_2 normalization of neuronal weights. Experiments with standard image classification tasks on CIFAR-10 demonstrate that, relative to baseline end-to-end trained architectures, our proposed architecture (a) leads to sparser activations (with only a slight compromise on accuracy), (b) exhibits more robustness to noise (without being trained on noisy data), (c) exhibits more robustness to adversarial perturbations (without adversarial training).Comment: 5 pages, 5 figure

    Self-supervised Speaker Recognition Training Using Human-Machine Dialogues

    Full text link
    Speaker recognition, recognizing speaker identities based on voice alone, enables important downstream applications, such as personalization and authentication. Learning speaker representations, in the context of supervised learning, heavily depends on both clean and sufficient labeled data, which is always difficult to acquire. Noisy unlabeled data, on the other hand, also provides valuable information that can be exploited using self-supervised training methods. In this work, we investigate how to pretrain speaker recognition models by leveraging dialogues between customers and smart-speaker devices. However, the supervisory information in such dialogues is inherently noisy, as multiple speakers may speak to a device in the course of the same dialogue. To address this issue, we propose an effective rejection mechanism that selectively learns from dialogues based on their acoustic homogeneity. Both reconstruction-based and contrastive-learning-based self-supervised methods are compared. Experiments demonstrate that the proposed method provides significant performance improvements, superior to earlier work. Dialogue pretraining when combined with the rejection mechanism yields 27.10% equal error rate (EER) reduction in speaker recognition, compared to a model without self-supervised pretraining.Comment: 5 pages, 2 figure
    corecore