11 research outputs found

    Soft X-ray induced radiation damage in thin freeze-dried brain samples studied by FTIR microscopy

    Get PDF
    In order to push the spatial resolution limits to the nanoscale, synchrotron-based soft X-ray microscopy (XRM) experiments require higher radiation doses to be delivered to materials. Nevertheless, the associated radiation damage impacts on the integrity of delicate biological samples. Herein, the extent of soft X-ray radiation damage in popular thin freeze-dried brain tissue samples mounted onto Si3N4 membranes, as highlighted by Fourier transform infrared microscopy (FTIR), is reported. The freeze-dried tissue samples were found to be affected by general degradation of the vibrational architecture, though these effects were weaker than those observed in paraffin-embedded and hydrated systems reported in the literature. In addition, weak, reversible and specific features of the tissue–Si3N4 interaction could be identified for the first time upon routine soft X-ray exposures, further highlighting the complex interplay between the biological sample, its preparation protocol and X-ray probe

    Electronic structure of MAPbI3 and MAPbCl3: importance of band alignment

    Get PDF
    Since their first appearance, organic-inorganic perovskite absorbers have been capturing the attention of the scientific community. While high efficiency devices highlight the importance of band level alignment, very little is known on the origin of the strong n-doping character observed in the perovskite. Here, by means of a highly accurate photoemission study, we shed light on the energy alignment in perovskite-based devices. Our results suggest that the interaction with the substrate may be the driver for the observed doping in the perovskite samples

    Nanoelectrode Arrays Fabricated by Thermal Nanoimprint Lithography for Biosensing Application

    No full text
    Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5–10 µg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications

    Nanoelectrode Arrays Fabricated by Thermal Nanoimprint Lithography for Biosensing Application

    No full text
    Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5-10 μg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications

    Nanostructuring methylammonium lead iodide perovskite by ultrafast nano imprinting lithography

    No full text
    We report the nanopatterning of the methylammonium lead iodide (MAPbI3) perovskite, a polycrystalline hybrid organic-inorganic semiconductor with very promising perspectives for photovoltaic and optoelectronic applications. Nanopatterning of MAI is obtained via Pulsed-NIL technology, an ultrafast version of the thermal nanoimprint lithography (NIL) based on stamps with integrated heaters. By Pulsed-NIL we were able to replicate onto the hybrid perovskite structures with details at the sub-100 nm scale, in spite of its crystalline nature. This work shows a new possibility for the exploitation of organo-metal halide perovskites in optoelectronic devices with more complex architectures than just planar films

    Nanostructuring methylammonium lead iodide perovskite by ultrafast nano imprinting lithography

    No full text
    We report the nanopatterning of the methylammonium lead iodide (MAPbI3) perovskite, a polycrystalline hybrid organic-inorganic semiconductor with very promising perspectives for photovoltaic and optoelectronic applications. Nanopatterning of MAI is obtained via Pulsed-NIL technology, an ultrafast version of the thermal nanoimprint lithography (NIL) based on stamps with integrated heaters. By Pulsed-NIL we were able to replicate onto the hybrid perovskite structures with details at the sub-100 nm scale, in spite of its crystalline nature. This work shows a new possibility for the exploitation of organo-metal halide perovskites in optoelectronic devices with more complex architectures than just planar films

    Soft X-ray induced radiation damage in thin freeze-dried brain samples studied by FTIR microscopy

    Get PDF
    In order to push the spatial resolution limits to the nanoscale, synchrotron-based soft X-ray microscopy (XRM) experiments require higher radiation doses to be delivered to materials. Nevertheless, the associated radiation damage impacts on the integrity of delicate biological samples. Herein, the extent of soft X-ray radiation damage in popular thin freeze-dried brain tissue samples mounted onto Si3N4 membranes, as highlighted by Fourier transform infrared microscopy (FTIR), is reported. The freeze-dried tissue samples were found to be affected by general degradation of the vibrational architecture, though these effects were weaker than those observed in paraffin-embedded and hydrated systems reported in the literature. In addition, weak, reversible and specific features of the tissue–Si3N4 interaction could be identified for the first time upon routine soft X-ray exposures, further highlighting the complex interplay between the biological sample, its preparation protocol and X-ray probe

    Triple negative breast cancer-derived small extracellular vesicles as modulator of biomechanics in target cells

    No full text
    Extracellular vesicle (EV) mediated communication has recently been proposed as one of the pivotal routes in the development of cancer metastasis. EVs are nano-sized vesicles swapped between cells, carrying a biologically active content that can promote tumor–induced immune suppression, metastasis and angiogenesis. Thus, EVs constitute a potential target in cancer therapy. However, their role in triggering the premetastatic niche and in tumor spreading is still unclear. Here, we focused on the EV ability to modulate the biomechanical properties of target cells, known to play a crucial role in metastatic spreading. To this purpose, we isolated and thoroughly characterized triple-negative breast cancer (TNBC)-derived small EVs. We then evaluated variations in the mechanical properties (cell stiffness, cytoskeleton/nuclear/morphology and Yap activity rearrangements) of non-metastatic breast cancer MCF7 cells upon EV treatment. Our results suggest that TNBC-derived small EVs are able to directly modify MCF7 cells by inducing a decrease in cell stiffness, rearrangements in cytoskeleton, focal adhesions and nuclear/cellular morphology, and an increase in Yap downstream gene expression. Testing the biomechanical response of cells after EV addition might represent a new functional assay in metastatic cancer framework that can be exploited for future application both in diagnosis and in therapy

    Chemical constitution of polyfurfuryl alcohol investigated by FTIR and Resonant Raman spectroscopy

    No full text
    The actual chemical structure of polyfurfuryl alcohol (PFA) is still uncertain in spite of several studies on the topic, variations during the polymerization processes being one reason that must be addressed. The use of a limited set of analytical techniques is often insufficient to provide an exhaustive chemical characterization. Moreover, it is still not possible to exactly determine presence and amount of each specific functional group in the polymeric structure. We employed both Fourier Transform Infrared Spectroscopy (FTIR) and Resonant Raman spectroscopy (RR), corroborated by quantum mechanically aided analysis of the experimental spectra, to infer about the chemical structure of two samples of PFAs, synthetized in different ways and appearing macroscopically different, the first one being a liquid and viscous commercial sample, the second one being a self-prepared solid and rigid sample produced following a thermosetting procedure. The vibrational spectroscopic analysis confirms the presence of differences in their chemical structures. The viscous form of PFA is mainly composed by short polymeric chains, and is characterized by the presence of isolated furfuryl alcohol and furfural residues similar to 5-hydroxymethylfurfural; the thermosetted PFA is formed by more cross-linked structures, characterized by several ketones and alkene double bonds, as well as a significant presence of Diels-Alder structures. In summary, the present study evidences how the use of both FTIR and RR spectroscopy, the latter carried out at several laser excitation wavelengths, indicates an accurate way to spectroscopically investigate complex polymers enabling to satisfactorily infer about their peculiar chemical structur
    corecore