290 research outputs found

    DeepSRE: Identification of sterol responsive elements and nuclear transcription factors Y proximity in human DNA by Convolutional Neural Network analysis

    Get PDF
    SREBP1 and 2, are cholesterol sensors able to modulate cholesterol-related gene expression responses. SREBPs binding sites are characterized by the presence of multiple target sequences as SRE, NFY and SP1, that can be arranged differently in different genes, so that it is not easy to identify the binding site on the basis of direct DNA sequence analysis. This paper presents a complete workflow based on a one-dimensional Convolutional Neural Network (CNN) model able to detect putative SREBPs binding sites irrespective of target elements arrangements. The strategy is based on the recognition of SRE linked (less than 250 bp) to NFY sequences according to chromosomal localization derived from TF Immunoprecipitation (TF ChIP) experiments. The CNN is trained with several 100 bp sequences containing both SRE and NF-Y. Once trained, the model is used to predict the presence of SRE-NFY in the first 500 bp of all the known gene promoters. Finally, genes are grouped according to biological process and the processes enriched in genes containing SRE-NFY in their promoters are analyzed in details. This workflow allowed to identify biological processes enriched in SRE containing genes not directly linked to cholesterol metabolism and possible novel DNA patterns able to fill in for missing classical SRE sequences

    Lack of Correlation of Plasma HDL With Fecal Cholesterol and Plasma Cholesterol Efflux Capacity Suggests Importance of HDL Functionality in Attenuation of Atherosclerosis

    Get PDF
    A number of clinical findings suggested HDL-raising as a plausible approach to treat residual risk of CVD. However, lack of CVD risk reduction by elevated HDL cholesterol (HDL-C) through cholesterol ester transfer protein (CETP) inhibition and enhanced risk reduction in apolipoprotein A-I Milano (apoAI-M) individuals with low HDL-C shifted the focus from HDL-C level to HDL function. In the present study, we investigated correlations between HDL-C, HDL function, fecal cholesterol excretion, and ex vivo plasma cholesterol efflux capacity (CEC) in animal models using two HDL modulators, LXR and PPAR-α agonists. In C57Bl mice, LXR agonist, T1317, raised HDL-C by 30%, while PPAR-α agonist, fenofibrate, reduced HDL-C by 30%, but fecal cholesterol showed twofold increase in both cases. CEC showed a 30–40% increase. Combination of LXR and PPAR-α agonists showed no changes in HDL-C, but, interestingly, fecal cholesterol increased by 4.5-fold, and CEC by 40%, suggesting existence of additional pathway for fecal cholesterol excretion. Regression analysis showed a lack of correlation between HDL-C and fecal cholesterol and CEC, while fecal cholesterol showed significant correlation with CEC, a measure of HDL function. ABCA1 and G1, the two important players in RCT showed greater induction with LXR agonist than PPAR-α agonist. HDL-C increased by 40 and 80% in LXR and PPAR-α treated apoA-I transgenic mice, respectively, with 80% increase in fecal cholesterol. A fivefold increase in fecal cholesterol with no correlation with either plasma HDL-C or CEC following co-treatment with LXR and PPAR-α agonists suggested existence of an HDL-independent pathway for body cholesterol elimination. In hyperlipidemic diabetic ob/ob mice also combination of LXR and PPAR-α agonists showed marked increases in fecal cholesterol content (10–20-fold), while HDL-C rise was only 40%, further suggesting HDL-independent elimination of body cholesterol in mice treated with combination of LXR and PPAR-α agonists. Atherosclerosis attenuation by LXR and PPAR-α agonists in LDLr-deficient mice was associated with increased fecal cholesterol, but not HDL-C. However, fecal cholesterol counts showed inverse correlation with aortic cholesteryl ester content. These data suggest: (a) lack of correlation between HDL-C and fecal or aortic cholesterol content; (b) HDL function (CEC) correlated with fecal cholesterol content; (c) association of reduced aortic lipids in LDLr−/− mice with increased fecal cholesterol, but not with HDL-C, and (d) existence of an HDL-independent pathway for fecal cholesterol excretion following co-treatment with LXR and PPAR-α agonists

    Effects of PCSK9 inhibitors on HDL cholesterol efflux and serum cholesterol loading capacity in familial hypercholesterolemia subjects: a multi-lipid-center real-world evaluation

    Get PDF
    Proprotein convertase subtilisin/kexin type 9 (PCSK9), beyond regulating LDL cholesterol (LDL-c) plasma levels, exerts several pleiotropic effects by modulating lipid metabolism in extrahepatic cells such as macrophages. Macrophage cholesterol homeostasis depends on serum lipoprotein functions, including the HDL capacity to promote cell cholesterol efflux (CEC) and the serum capacity to promote cell cholesterol loading (CLC). The aim of this observational study was to investigate the effect of PCSK9 inhibitors (PCSK9-i) treatment on HDL-CEC and serum CLC in patients with familial hypercholesterolemia (FH). 31 genetically confirmed FH patients were recruited. Blood was collected and serum isolated at baseline and after 6 months of PCSK9-i treatment. HDL-CEC was evaluated through the main pathways with a radioisotopic cell-based assay. Serum CLC was assessed fluorimetrically in human THP-1 monocyte-derived macrophages. After treatment with PCSK9-i, total cholesterol and LDL-c significantly decreased (−41.6%, p < 0.0001 and −56.7%, p < 0.0001, respectively). Total HDL-CEC was not different between patients before and after treatment. Conversely, despite no changes in HDL-c levels between the groups, ABCG1 HDL-CEC significantly increased after treatment (+22.2%, p < 0.0001) as well as HDL-CEC by aqueous diffusion (+7.8%, p = 0.0008). Only a trend towards reduction of ABCA1 HDL-CEC was observed after treatment. PCSK9-i significantly decreased serum CLC (−6.6%, p = 0.0272). This effect was only partly related to the reduction of LDL-c levels. In conclusion, PCSK9-i treatment significantly increased HDL-CEC through ABCG1 and aqueous diffusion pathways and reduced the serum CLC in FH patients. The favorable effect of PCSK9-i on functional lipid profile could contribute to the cardiovascular benefit of these drugs in FH patients

    Cardiovascular Outcomes Trials in Type 2 Diabetes: Where Do We Go From Here? Reflections From a Diabetes Care Editors’ Expert Forum

    Get PDF
    In December 2008, the U.S. Food and Drug Administration issued guidance to the pharmaceutical industry setting new expectations for the development of antidiabetes drugs for type 2 diabetes. This guidance expanded the scope and cost of research necessary for approval of such drugs by mandating long-term cardiovascular outcomes trials (CVOTs) for safety. Since 2008, 9 CVOTs have been reported, 13 are under way, and 4 have been terminated. Reassuringly, each of the completed trials demonstrated the noninferiority of their respective drugs to placebo for their primary cardiovascular (CV) composite end point. Notably, four additionally provided evidence of CV benefit in the form of significant decreases in the primary CV composite end point, two suggested reductions in CV death, and three suggested reductions in all-cause mortality. Although these trials have yielded much valuable information, whether that information justifies the investment of time and resources is controversial. In June 2016, a Diabetes Care Editors' Expert Forum convened to review the processes and challenges of CVOTs, discuss the benefits and limitations of their current designs, and weigh the merits of modifications that might improve the efficiency and clinical value of future trials. Discussion and analysis continued with the CVOT trial results released in June 2017 at the American Diabetes Association's Scientific Sessions and in September 2017 at the European Association for the Study of Diabetes scientific meeting. This article summarizes the discussion and findings to date

    Beyond Metformin: Safety Considerations in the Decision-Making Process for Selecting a Second Medication for Type 2 Diabetes Management: Reflections From aDiabetes CareEditors’ Expert Forum

    Get PDF
    The trend toward personalized management of diabetes has focused attention on the differences among available pharmacological agents in terms of mechanisms of action, efficacy, and, most important, safety. Clinicians must select from these features to develop individualized therapy regimens. In June 2013, a nine-member Diabetes Care Editors’ Expert Forum convened to review safety evidence for six major diabetes drug classes: insulin, sulfonylureas (SUs), thiazolidinediones (TZDs), glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, and sodium glucose cotransporter 2 inhibitors. This article, an outgrowth of the forum, summarizes well-delineated and theoretical safety concerns related to these drug classes, as well as the panelists’ opinions regarding their best use in patients with type 2 diabetes. All of the options appear to have reasonably wide safety margins when used appropriately. Those about which we know the most—metformin, SUs, insulin, and perhaps now also TZDs—are efficacious in most patients and can be placed into a basic initial algorithm. However, these agents leave some clinical needs unmet. Selecting next steps is a more formidable process involving newer agents that are understood less well and for which there are unresolved questions regarding risk versus benefit in certain populations. Choosing a specific agent is not as important as implementing some form of early intervention and advancing rapidly to some form of combination therapy as needed. When all options are relatively safe given the benefits they confer, therapeutic decision making must rely on a personalized approach, taking into account patients’ clinical circumstances, phenotype, pathophysiological defects, preferences, abilities, and costs
    • 

    corecore