2 research outputs found

    Macroinvertebrate community responses to river impoundment at multiple spatial scales

    Get PDF
    River impoundment by the construction of dams potentially modifies a wide range of abiotic and biotic factors in lotic ecosystems and is considered one of the most significant anthropogenic impacts on rivers globally. The past two decades have witnessed a growing body of research centred on quantifying the effects of river impoundment, with a focus on mitigating and managing the effects of individual large dams. This study presents a novel multi-scale comparison of paired downstream and control sites associated with multiple water supply reservoirs (n = 80) using a spatially extensive multi-year dataset. Macroinvertebrate community structure and indices were analysed in direct association with spatial (e.g. region) and temporal variables (e.g. season) to identify consistent patterns in ecological responses to impoundment. Macroinvertebrate communities at monitoring sites downstream of water supply reservoirs differed significantly from those at control sites at larger spatial scales, both in terms of community structure and taxa richness. The effect was most significant at the regional scale, while biogeographical factors appeared to be important drivers of community differences at the national scale. Water supply reservoirs dampened natural seasonal patterns in community structure at sites downstream of impoundments. Generally, taxonomic richness was higher and %EPT richness lower at downstream sites. Biomonitoring indices used for river management purposes were able to detect community differences, demonstrating their sensitivity to river regulation activities. The results presented improve our understanding of the spatially extensive and long-term effects of water supply reservoirs on instream communities and provide a basis for the future implementation of mitigation measures on impounded rivers and heavily modified waterbodies

    The identification of hydrological indices for the characterization of macroinvertebrate community response to flow regime variability

    Get PDF
    The importance of flow regime variability for maintaining ecological functioning and integrity of river ecosystems has been firmly established in both natural and anthropogenically modified systems. River flow regimes across lowland catchments in eastern England are examined using 47 variables, including those derived using the Indicators of Hydrologic Alteration (IHA) software. A principal component analysis method was used to identify redundant hydrological variables and those that best characterized the hydrological series (1986–2005). A small number of variables (<6) characterized up to 95% of the statistical variability in the flow series. The hydrological processes and conditions that the variables represent were found to be significant in structuring the in-stream macroinvertebrate community Lotic-invertebrate Index for Flow Evaluation (LIFE) scores at both the family and species levels. However, hydrological variables only account for a relatively small proportion of the total ecological variability (typically <10%). The research indicates that a range of other factors, including channel morphology and anthropogenic modification of in-stream habitats, structure riverine macroinvertebrate communities in addition to hydrology. These factors need to be considered in future environmental flow studies to enable the characterization of baseline/reference conditions for management and restoration purposes
    corecore