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• Macroinvertebrate communities down-
stream of reservoirs differed from con-
trol sites.

• Community differences were detected
at both the national and regional scales.

• Taxonomic richness was higher at
impounded sites than control sites.

• Proportion of sensitive macroinverte-
brate groups was lower downstream
of reservoirs.

• Community differences were detected
by macroinvertebrate biomonitoring in-
dices.
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River impoundment by the construction of dams potentiallymodifies awide range of abiotic and biotic factors in
lotic ecosystems and is considered one of the most significant anthropogenic impacts on rivers globally. The past
two decades have witnessed a growing body of research centred on quantifying the effects of river impound-
ment, with a focus on mitigating and managing the effects of individual large dams. This study presents a
novel multi-scale comparison of paired downstream and control sites associatedwithmultiplewater supply res-
ervoirs (n= 80) using a spatially extensive multi-year dataset. Macroinvertebrate community structure and in-
diceswere analysed in direct associationwith spatial (e.g. region) and temporal variables (e.g. season) to identify
consistent patterns in ecological responses to impoundment.Macroinvertebrate communities atmonitoring sites
downstream of water supply reservoirs differed significantly from those at control sites at larger spatial scales,
both in terms of community structure and taxa richness. The effect was most significant at the regional scale,
while biogeographical factors appeared to be important drivers of community differences at the national scale.
Water supply reservoirs dampened natural seasonal patterns in community structure at sites downstream of im-
poundments. Generally, taxonomic richness was higher and %EPT richness lower at downstream sites. Biomon-
itoring indices used for river management purposes were able to detect community differences, demonstrating
their sensitivity to river regulation activities. The results presented improve our understandingof the spatially ex-
tensive and long-term effects of water supply reservoirs on instream communities and provide a basis for the fu-
ture implementation of mitigation measures on impounded rivers and heavily modified waterbodies.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction
Streams and rivers are among the world's most threatened eco-
systems (Malmqvist and Rundle, 2002; Vörösmarty et al., 2010;
WWF, 2016), mainly as a result of increased anthropogenic manage-
ment and modification on a global scale (Nilsson et al., 2005). The
worldwide alteration of the terrestrial water cycle has been de-
scribed as a global issue alongside climate change (Vörösmarty and
Sahagian, 2000). River impoundment by the construction of dams
and the creation of reservoirs is considered one of the most signifi-
cant forms of river regulation (Petts, 1984; Zarfl et al., 2015).
Today, there are an estimated 58,500 large dams (higher than
15 m) worldwide (ICOLD, 2017).

The physical and chemical impact of river impoundment has been
extensively documented (e.g. Webb and Walling, 1993; Gilvear, 2004;
Yang et al., 2014;Maavara et al., 2015).Modification of the discharge re-
gime affects all critical components of the natural flow regime (Poff
et al., 1997; Magilligan and Nislow, 2005), is regarded as a major
cause of stream degradation (Gordon et al., 2004; Tonkin et al., 2018)
and is one of the most important factors influencing instream commu-
nities (Rosenberg et al., 2000). River impoundment has a profound ef-
fect on the instream ecology of lotic environments by affecting flow-
ecology relationships (Bunn and Arthington, 2002). Benthic macroin-
vertebrate communities in particular have been intensively studied in
relation to the effect of impoundment, with research examining com-
munity structure (Lessard and Hayes, 2003; Ladrera et al., 2015;
Santos et al., 2017) and species diversity and richness (García de Jalón
et al., 1994; Growns and Growns, 2001; Bredenhand and Samways,
2009). Both flow and thermal regime have been linked to changes to
downstream macroinvertebrate communities (Petts, 1984; Martínez
et al., 2013; White et al., 2017a). Since direct comparison of pre- and
post-dam macroinvertebrate communities is often not possible, due to
an absence of pre-impoundment baseline monitoring data (but see
Armitage, 1978;Maynard and Lane, 2012),most studies have compared
sites downstream of impoundments with control sites (i.e. sites as-
sumed to represent unregulated conditions at the downstream sites -
e.g. Growns and Growns, 2001; Holt et al., 2015).

To mitigate the perceived deleterious effects of impoundments, the
implementation of environmental flows or e-flows (Acreman et al.,
2009; Poff et al., 2010; Horne et al., 2017) has been proposed, referring
to the quantity, timing and quality of river flow that is required to sus-
tain lotic ecosystems and the services they provide (Dyson et al.,
2003; Acreman et al., 2014; Overton et al., 2014). A range of studies
have investigated reservoir outflow modification to enhance down-
stream ecosystems (for a review, see Gillespie et al., 2015b). Research
centred on the effects of river impoundment has typically taken place
on the site-specific scale involving single or several reservoirs (e.g.
Greenwood et al., 1999; Holt et al., 2015), with a focus on the effects
of large hydropower dams with rapidly changing discharge regimes
(Alfredsen et al., 2012; Yang et al., 2014; Phillips et al., 2015). Moreover,
most studies cover short time periods (Jackson et al., 2007; Gillespie
et al., 2015a), generally restricted by the availability of appropriate eco-
logical datasets.

The use of long-term observation datasets has recently been de-
ployed in related ecological studies, for instance to demonstrate the ef-
fect of climate change on benthic macroinvertebrate communities on a
large spatial scale (Jourdan et al., 2018). However, transferable flow-
ecology relationships beyond the site scale remain elusive (Poff and
Zimmerman, 2010). Moreover, the impact of reduced flow variability
downstream of water supply reservoirs is not yet fully understood.
Most dams of water supply reservoirs release water to the downstream
river via a managed discharge regime that bears little resemblance to
the natural hydrograph (historically termed ‘compensation flows’ in
the UK - Gustard, 1989; Acreman and Dunbar, 2004), often reducing
peak flows and increasing low flows (Higgs and Petts, 1988;
McManamay et al., 2012; Stewardson et al., 2017).
This paper presents a large-scale comparison between the macroin-
vertebrate communities of monitoring sites downstream of multiple
water supply reservoirs operating fixed flow releases and control sites.
The overarching research aim was to identify consistent downstream
patterns in ecological responses to water supply reservoirs beyond the
site-specific scale. To address this, a multi-year (covering 2012–2016)
national-scale biomonitoring dataset associated with 37 reservoir clus-
ters (80 reservoirs) in England was used. The study aimed to assess the
followinghypotheses: 1) Consistent differences exist betweenmacroin-
vertebrate communities at sampling sites downstream of water supply
reservoirs and at control sites at the regional and national scales; 2) Pat-
terns in ecological responses can be detected by existing macroinverte-
brate biomonitoring tools employed to assess environmental variability.

2. Methods

2.1. Study area

The current study used data from the monitoring network SHEBAM
(Setting the Hydro-Ecological Basis for Adaptive Management), which
was established in 2012 by the Environment Agency of England (the
statutory environmental regulatory agency in England, UK) to improve
understanding of the ecological response to river flow alteration down-
streamofwater supply reservoirs. This is to support assessments for the
EU Water Framework Directive, particularly the ecological basis for
adaptive management trials. The key feature of the network is the
pairing of monitoring sites downstream of water supply reservoirs sub-
ject to compensation flow release schemes (called ‘downstream sites’
hereafter) and control sites, predominantly located in upland areas of
England. As only limited pre-impoundment biomonitoring took place,
control sites were selected to reflect the conditions that would occur
at the downstream sites without the presence of the impoundment.
These control sites were located either on the river reach upstream of
the reservoir or on an unregulated tributary. The total network com-
prised 37 clusters (Fig. 1) of either individual or serial impoundments,
involving a total of 105 monitoring sites associated with 80 reservoirs
(1–6 reservoirs per cluster). From each cluster, 1 downstream and 1
control site closest to the impoundment were selected, resulting in a
total of 74 sample sites (37 downstream-control site pairs). From the
37 control sites examined, 28 sites were upstream of the impoundment
and 9 sites were located on tributaries.

2.2. Sampling

All monitoring sites were sampled biannually (spring and autumn)
2012–2016, yielding a maximum of ten samples per site, with the ex-
ception of sites thatwere introduced or replaced in 2015 after a network
revision (n = 20; mainly control sites). For these sites, samples were
only available for 2015 and 2016 (maximumof 4 samples). Spring sam-
ples were collected March–May and autumn samples were collected
September–November. Benthic macroinvertebrates were collected by
means of a standardised 3-minute kick- samplingmethodwith an addi-
tional 1-minute hand search (Murray-Bligh, 1999). All samples were
preserved using denatured alcohol (70% ethanol) in the field (ISO,
2012) andwere returned to the laboratory for processing and identifica-
tion. Macroinvertebrate taxa were identified to a consistent mixed tax-
onomic level (species level where possible, but some taxa at genus level
or family level - see Davy-Bowker et al., 2010), with abundances being
recorded. For a number of samples, faunal identificationswere indepen-
dently verified following Environment Agency quality assurance
protocols.

The total number of samples available for analysis was 615 (315
downstream site samples, 300 control site samples), initially compris-
ing N500 taxonomic entries (called ‘taxa’ hereafter). Pre-analysis was
undertaken to ensure a consistent taxonomy across all samples by
merging overlapping family, genus and species entries occurring in



Fig. 1. Location of the 37 SHEBAM reservoir groups. The dash-lined circles indicate regions.
INSET: close-up of the Derwent reservoir in Northumberland, comprising one control site
(blue dot) and 3 downstream sites (red triangles). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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separate samples to ensure consistency. In addition, some taxa at order,
family or genus level were removed; a number taxa of were resolved to
genus (mainly insect taxa), family (e.g. most Diptera taxa), order (e.g.
Cladocera, Odonata) or higher taxonomic levels (e.g. Hydracarina,
Oligochaeta). This process resulted in a final macroinvertebrate dataset
comprising 236 taxa.

3. Data analysis

Macroinvertebrate communities at downstream and control sites
were analysed at different spatial scales. At the national scale, all 37
downstream- control site pairs (615 samples) were analysed together.
For the regional- scale analysis, the 37 pairs were divided into seven re-
gions (see Fig. 1), based on the geographical proximity of the reservoir
clusters while also aiming for a balanced design as to the number of
clusters and sample sites per region. Each region comprised 3–7 pairs,
with most regions comprising 5 or 6 pairs. Differences in macroinverte-
brate community structure were tested against three spatial and two
temporal variables, all treated asmulti-level factors: ‘Site type’ (2 levels:
‘Downstream’ and ‘Control’); ‘Region’ (7); ‘Downstream-Control site
pair’ (‘DC pair’; 37); ‘Season’ (2: ‘spring’ and ‘autumn’); ‘Year’ (5:
2012–2016).

3.1. Community structure

Prior to analysis, macroinvertebrate abundances (absolute counts)
were transformed into proportions by dividing individual taxa counts
by the total count per sample. Community structure was analysed
using a three-step approach: 1) The influence of ‘Site type’ (down-
stream or control site) on macroinvertebrate communities was exam-
ined by analysing spring and autumn samples separately, in common
with other studies involving macroinvertebrate samples (e.g. Monk
et al., 2008); 2) The impact of impoundment on seasonal patterns in
macroinvertebrate community structure was examined by dividing
samples into ‘Downstream’ and ‘Control’ site groups and testing both
groups in associationwith ‘Season’ (spring or autumn); 3) The influence
of the other spatio-temporal variables ‘Region’, ‘Year’ and ‘DC pair’ was
tested by analysing both seasons and site types individually, thus divid-
ing samples into four groups.

In all three steps, differences in community structure between levels
of individual variables were tested with a non-parametric Permutation-
alMultivariate Analysis of Variance (PERMANOVA; see Anderson, 2001)
using the ‘adonis’ function from the R package ‘Vegan’ (Oksanen et al.,
2017). This function partitions the total statistical variation (sums of
squares) for the different sources of variation (i.e. the analysed vari-
able(s)). This way, we determined the amount of total statistical varia-
tion that is explained by the spatio-temporal variable analysed and
the amount that was unexplained. The ‘adonis’ function outputs the
partitioned statistical variation as partial R-squared values or R2-values,
whichwill be presented throughout the text and alongside the standard
pseudo-F and p-value output in the relevant tables. The significance of
the partitionswere inspected using 999 permutations. Multivariate pat-
terns in community structure were visualised using Non-metric Multi-
dimensional Scaling (NMDS) ordination, using the ‘metaMDS’ function
in ‘Vegan’. Both techniques were applied using Bray-Curtis dissimilarity
matrices.

3.2. Taxonomic richness and biomonitoring indices

For every macroinvertebrate sample, total taxonomic richness (the
number of taxa recorded in a sample), total EPT richness (the number
of Ephemeroptera, Plecoptera and Trichoptera taxa in a sample) and rel-
ative EPT richness (%EPT - the number of EPT taxa in proportion to the
total number of sampled taxa)were calculated. In addition, four macro-
invertebrate community biomonitoring indices were derived, each de-
veloped for assessing the impact of different abiotic factors: i) Lotic-
invertebrate Index for Flow Evaluation (LIFE) - flow variability
(Extence et al., 1999); ii)Walley-Hawkes-Paisley-Triggs (WHPT) - envi-
ronmental quality (Paisley et al., 2014); iii) Proportion of Sediment-
sensitive Invertebrates (PSI) - instream fine sediment loading
(Extence et al., 2013); and iv) Community Conservation Index (CCI) -
community richness and relative rarity of taxa (Chadd and Extence,
2004). Differences in taxonomic richness and biomonitoring indices be-
tween different site types (downstream or control sites) were tested by
means of a non-parametric one-way Analysis of Variance test (Kruskal-
Wallis), analysing spring and autumn samples separately.

4. Results

4.1. Community structure

National-scale analysis on separate spring and autumn samples
(Step 1 of analysis) indicated that community structure differed signif-
icantly between downstream sites and control sites, both for spring and
autumn samples. Results from the PERMANOVA analysis indicated that
the proportion of the total statistical variation (R2; see Section 3.1) ex-
plained by variable ‘Site type’ (downstream or control) was b5%
(Table 1). Ordination plots (NMDS) indicated that the clusters of down-
stream and control site samples largely overlap, but density and distri-
bution of both point clouds differ (autumn samples in Fig. 2, panel a;
see Fig. S1 for spring samples). Regional-scale analysis identified a sim-
ilar pattern to the national scale analysis (Table 1). Macroinvertebrate
community structure differed significantly between downstream and
control sites for all regions except theMidlands region (see Fig. 1). The
R2 for ‘Site type’ was higher at the regional scale than at the national
scale (7–26%), being highest for theNorth East Peak District region. Clus-
ters of downstream and control site samples were distinct for most

Image of Fig. 1


Fig. 3. National-scale NMDS ordination results involving sample subsets based on ‘Site
type’ and ‘Season’, labelled according to ‘Region’ (Step 3). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Results from PERMANOVA testing the significance of ‘Site type’ on community structure
for separate spring and autumn samples (Step 1). NS = non-significant; ⁎⁎⁎ = p ≤
0.001; ⁎⁎= p ≤ 0.01; ⁎ = p ≤ 0.05.

Region Season Pseudo-F R2 p

National scale Spring 12.30 0.039 0.001⁎⁎⁎

Autumn 13.44 0.042 0.001⁎⁎⁎

North England Spring 5.56 0.122 0.001⁎⁎⁎

Autumn 6.46 0.145 0.001⁎⁎⁎

Yorkshire Dales Spring 3.39 0.078 0.002⁎⁎

Autumn 3.21 0.073 0.004⁎⁎

South Pennines Spring 5.44 0.108 0.001⁎⁎⁎

Autumn 5.08 0.099 0.001⁎⁎⁎

North East Peak District Spring 20.27 0.262 0.001⁎⁎⁎

Autumn 13.21 0.191 0.001⁎⁎⁎

South West Peak District Spring 3.58 0.068 0.001⁎⁎⁎

Autumn 5.13 0.093 0.001⁎⁎⁎

Midlands Spring 1.54 0.034 0.101 (NS)
Autumn 1.74 0.038 0.067 (NS)

South West England Spring 4.78 0.201 0.001⁎⁎⁎

Autumn 3.85 0.176 0.002⁎⁎
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regions (autumn samples in Fig. 2, panels b–h; see Fig. S1 for spring
samples).

Macroinvertebrate community structure differed significantly be-
tween spring and autumn at the national scale (Step 2). The proportion
of the total statistical variation explained by ‘Season’was slightly lower
for downstream(4.4%) than for control sites (5.6%) (Table S1). At the re-
gional scale, the seasonal effect was significant for all regions except for
downstream sites in SouthWest England (Table S1). The R2 for ‘Season’
was typically less for downstream sites (5–11%) than for control sites
(6–25%).

Community composition differed significantly between regions
(Step 3). The R2 for ‘Region’was higher for control than for downstream
site samples and highest for spring samples at control sites (30%, versus
22% for control site autumn samples - see Table S2–S3). At downstream
sites, the R2 was 15–16% with no apparent difference between seasons.
Samples from individual regions were largely separated (Fig. 3). ‘Year’
was typically not significant at the regional scale, but was significant
Fig. 2. NMDS ordination results including all autumn samples on national (panel a) and region
triangles = downstream sites. (For interpretation of the references to colour in this figure lege
for autumn downstream site samples at the national scale. The variable
‘DC pair’ (Downstream- Control site pairs) tested significantly and re-
sulted in a high R2 at the national scale, around 60% for individual sea-
sons and site types. At control sites, the R2 was higher for spring
scale (panels b-h), labelled according to ‘Site type’ (Step 1). Blue dots = control sites, red
nd, the reader is referred to the web version of this article.)

Image of Fig. 2
Image of Fig. 3
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samples than for autumn samples, similar to the ‘Region’ variable. No
clear differences were recorded at downstream sites. The variable ‘DC
pair’ was also statistically significant at the regional scale, although the
proportions of total variation explained varied markedly between
regions.
4.2. Taxonomic richness

Taxonomic richness indices all differed significantly between down-
stream and control sites at the national scale (Table 2 and Table S4).
Taxonomic richness was significantly higher at downstream sites than
control sites, with on average higher values in spring than in autumn.
There was a similar pattern for total EPT richness, although the differ-
ence between downstream and control sites was small. The proportion
of EPT was significantly lower at downstream sites than control sites.

At the regional scale, taxa richness was typically higher at down-
stream sites than at control sites (autumn samples in Fig. 4; spring sam-
ples in Fig. S2). This differencewas significant for three regions in spring
and five regions in autumn (Table 2 and Table S4). On average, total EPT
richness was higher at downstream sites in most regions, although re-
sults were not statistically significant in most instances. The proportion
of EPT was typically lower at downstream sites than control sites, al-
though this difference was significant in only 2 regions in autumn and
4 regions in spring. In addition, values for %EPT were markedly lower
for theMidlands compared to the other regions.
Fig. 4. Regional-scale taxonomic richness values calculated on autumn samples, per site
type (C = control, D = downstream sites).
4.3. Biomonitoring indices

All biomonitoring indices studied differed significantly between
downstream and control sites at the national scale (Table 3 and
Table S5). Scores for all indices were lower at downstream sites, al-
though differences in LIFE and CCI scores were limited. Values were
on average higher in spring than in autumn.

Values for LIFE, WHPT and PSI were significantly lower at down-
stream sites than control sites in the majority of regions (Table 3 and
Table S5) and generally displayed a greater spread of scores at down-
stream sites than at control sites (autumn samples in Fig. 5; spring sam-
ples in Fig. S3). Values for LIFE, WHPT and PSI were markedly lower for
the Midlands than for other regions, similar to values for %EPT
(Section 4.2). Scores for CCI did not differ significantly between down-
streamand control sites formost regions and did not show a clear trend.
Table 2
Results from Kruskal-Wallis testing the significance of variable ‘Site type’ on taxonomic
richness indices for separate spring and autumn samples. NS = non-significant; ⁎⁎⁎= p
≤ 0.001; ⁎⁎= p ≤ 0.01; ⁎ = p ≤ 0.05.

Region Season Kruskal-Wallis p-value

Taxa richness EPT richness %EPT

National scale Spring 0.001⁎⁎⁎ 0.003⁎⁎ 0.001⁎⁎⁎

Autumn 0.001⁎⁎⁎ 0.014⁎ 0.001⁎⁎⁎

North England Spring 0.001⁎⁎⁎ 0.066 (NS) 0.001⁎⁎⁎

Autumn 0.001⁎⁎⁎ 0.179 (NS) 0.001⁎⁎⁎

Yorkshire Dales Spring 0.467 (NS) 0.221 (NS) 0.370 (NS)
Autumn 0.001⁎⁎⁎ 0.003⁎⁎ 0.538 (NS)

South Pennines Spring 0.001⁎⁎⁎ 0.003⁎⁎ 0.418 (NS)
Autumn 0.009⁎⁎ 0.085 (NS) 0.137 (NS)

North East Peak District Spring 0.001⁎⁎⁎ 0.032⁎ 0.014⁎

Autumn 0.010⁎⁎ 0.317 (NS) 0.004⁎⁎

South West Peak District Spring 0.220 (NS) 0.657 (NS) 0.172 (NS)
Autumn 0.103 (NS) 0.317 (NS) 0.374 (NS)

Midlands Spring 0.758 (NS) 0.190 (NS) 0.028⁎

Autumn 0.480 (NS) 0.138 (NS) 0.158 (NS)
South West England Spring 0.723 (NS) 0.190 (NS) 0.041⁎

Autumn 0.012⁎ 0.818 (NS) 0.053 (NS)
5. Discussion

5.1. Changes in community structure

The results of this study clearly indicate significant differences in
macroinvertebrate community structure between monitoring sites
downstream of impounding water supply reservoirs and unregulated
control sites. This supports observations from the wider literature (e.g.
Inverarity et al., 1983; Boon, 1988; Lessard and Hayes, 2003; Nichols
et al., 2006; Katano et al., 2009; Ladrera et al., 2015) indicating that
river impoundment leads to shifts in community structure. However,
the majority of previous research (e.g. Jackson et al., 2007; Growns
et al., 2009; Maynard and Lane, 2012) has examined the effect of im-
poundment at the scale of individual rivers or reservoirs and only a lim-
ited number of studies have demonstrated an effect over larger spatial
scales. In the current study, this effect was apparent at both the regional
and national scale. Our study is consistentwith a regional-scale study in
Australia by Growns and Growns (2001), who reported significant dif-
ferences in macroinvertebrate communities from regulated streams
downstream of water supply reservoirs compared to control sites up-
stream of reservoirs and unregulated neighbouring rivers. Gillespie
et al. (2015a) also reported modified macroinvertebrate community
structure at regulated sites in a regional study of upland areas in York-
shire, England.

The proportion of the total statistical variation explained by ‘Site
type’ (R2) at the national scalewas small (4%) and onlymoderately larg-
er at the regional scale (7–26%). This highlights the influence of other

Image of Fig. 4


Table 3
Results fromKruskal-Wallis testing the significance of variable ‘Site type’ on biomonitoring indices for separate spring and autumn samples. NS=non-significant; ⁎⁎⁎=p ≤ 0.001; ⁎⁎=p ≤
0.01; ⁎ = p ≤ 0.05.

Region Season Kruskal-Wallis p-value

LIFE WHPT PSI CCI

National scale Spring 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.023⁎

Autumn 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.037⁎

North England Spring 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.187 (NS)
Autumn 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.116 (NS)

Yorkshire Dales Spring 0.238 (NS) 0.300 (NS) 0.126 (NS) 0.154 (NS)
Autumn 0.513 (NS) 0.175 (NS) 0.018⁎ 0.200 (NS)

South Pennines Spring 0.148 (NS) 0.008⁎⁎ 0.015⁎ 0.524 (NS)
Autumn 0.256 (NS) 0.004⁎⁎ 0.002⁎⁎ 0.005⁎⁎

North East Peak District Spring 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.005⁎⁎

Autumn 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.001⁎⁎⁎ 0.004⁎⁎

South West Peak District Spring 0.001⁎⁎⁎ 0.011⁎ 0.001⁎⁎⁎ 0.474 (NS)
Autumn 0.001⁎⁎⁎ 0.007⁎⁎ 0.001⁎⁎⁎ 0.770 (NS)

Midlands Spring 0.012⁎ 0.026⁎ 0.019⁎ 0.073 (NS)
Autumn 0.045⁎ 0.041⁎ 0.120 (NS) 0.559 (NS)

South West England Spring 0.001⁎⁎⁎ 0.006⁎ 0.001⁎⁎⁎ 0.218 (NS)
Autumn 0.003⁎⁎ 0.003⁎ 0.003⁎⁎ 0.676 (NS)
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spatial variables and stressors onmacroinvertebrate communities (Leps
et al., 2015; Villeneuve et al., 2018) and partly reflects the fact that the
analysis comprised multiple sampling years. Although the temporal
variable ‘Year’was not significant inmost instances, part of the total sta-
tistical variation will comprise temporal variation. Our results point to
the influence of biogeography as an important control on community
structure. The spatial variables ‘Region’ and ‘DC pair’ (the reservoir
group a sample site belongs to) yielded relatively high R2 values, indi-
cating that biogeographical signals likely confound the effect of river im-
poundment on macroinvertebrate communities.

5.2. Impact on seasonal patterns

The results of this study demonstrate that impoundment by water
supply reservoirs dampens the natural season patterns at downstream
sites in two ways. First, the temporal variable ‘Season’was found to ex-
plain a smaller proportion of the total variation at downstream sites
than at control sites. Second, the seasonal pattern in sensitivity to bio-
geographical variables, which was apparent at control sites, was largely
absent at downstream sites. At control sites, macroinvertebrate com-
munity responses to biogeographical variables appeared stronger in
spring than in autumn. This highlights the potential influence of fauna
life-cycles on the temporal community structure. The spring samples
represent the community that has overwintered,whereas autumn sam-
ples reflect the effect of baseflow conditions coinciding with the sam-
pling period. We hypothesise that this dampening effect on natural
seasonal patterns downstreamof the reservoirs is the result ofmodifica-
tion of the flow and temperature regime by water supply reservoirs. A
similar effect on seasonal variation in phytoplankton communities in
regulated rivers was observed by Tornés et al. (2014) and was attribut-
ed to changes in hydrodynamics downstream of reservoirs.

5.3. Changes in taxa richness

Changes in community structure were reflected in a significantly
greater number of macroinvertebrate taxa recorded at downstream
sites than at control sites at both the national scale and for a number
of regions. This is in line with some published research on individual
water supply reservoirs (e.g. Petts and Greenwood, 1985; Petts et al.,
1993; Maynard and Lane, 2012) but in marked contrast to others (e.g.
Scullion et al., 1982; Growns and Growns, 2001; Nichols et al., 2006;
Benítez-Mora and Camargo, 2014; Ladrera et al., 2015) and literature
centred on hydropower dams (e.g. García de Jalón et al., 1994; Vinson,
2001; Jackson et al., 2007).
Our results further indicate amoderate increase of EPT taxa richness
at the national scale and a mixed response at the regional scale. The re-
ported responses of sensitive macroinvertebrate groups including
Ephemeroptera, Plecoptera and Trichoptera downstream of impound-
ment are not uniform in thewider literature. Some studies, often involv-
ing HEP dams, have reported an absolute reduction of some or all of
these groups (Boon, 1988; Jackson et al., 2007; Holt et al., 2015), while
others have observed increases (Armitage, 2006; Maynard and Lane,
2012; Gillespie et al., 2015a). We also found a lower percentage of EPT
taxa (%EPT) comprising communities at downstream sites, as reported
in other studies (Lessard and Hayes, 2003; Phillips et al., 2015), which
indicates an increase of less-sensitive non-EPT taxa. The increase of
more ubiquitous macroinvertebrate orders including.

Diptera or Oligochaeta are often reported downstream of impound-
ments (Ogbeibu and Oribhabor, 2002; Jackson et al., 2007; Phillips et al.,
2016).

We hypothesise that the proportional reduction of EPT taxa and in-
crease of less-sensitive taxa at downstream sites are linked to post-
impoundment flow regime and water quality modifications (Armitage
et al., 1987; Phillips et al., 2015; White et al., 2017a). Further research
should aim to quantify the various environmental drivers of community
changes downstream of impoundments. For example, Maynard and
Lane (2012) reported that flow regime changes following impound-
ment on a UK river had only limited effects on macroinvertebrate com-
munities and linked this to the strict compensation flow schemewith a
relatively high minimum flows.

5.4. Biomonitoring indices

The analysis of macroinvertebrate biomonitoring indices yielded
similar results to those observed in the analyses on community struc-
ture and taxonomic richness, underscoring their value in impounded
river research. Values for the Lotic-invertebrate Index for Flow Evalua-
tion (LIFE), Walley- Hawkes-Paisley-Triggs (WHPT) index, Proportion
of Sediment-sensitive Invertebrates (PSI), and Community Conserva-
tion Index (CCI)were significantly lower at downstream sites compared
to control sites at the national scale. Scores for LIFE, WHPT and PSI at
downstream sites were also typically lower at the regional scale, but
CCI turned out to be less responsive.

The results suggest that a combination of abiotic changes related to
impoundment affected the macroinvertebrate communities at down-
stream sites. Lower LIFE scores point to a reduction of taxa that favour
moderate to high flow velocity conditions (Extence et al., 1999), lower
PSI scores indicate an increase of taxa tolerant of increased fine



Fig. 5.Regional-scale biomonitoring indices values calculated on autumn samples, per site
type (C = control, D = downstream sites).
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sediment deposition (Extence et al., 2013), and lower WHPT scores in-
dicate an increase of pollution-tolerant taxa (Paisley et al., 2014). Flow
regulation and fine sediment accumulation often occur downstream of
impoundment (Petts, 1984; Magilligan and Nislow, 2005; Yang et al.,
2014), and releases from reservoirs can modify water quality in down-
stream river reaches (Growns et al., 2009; Casado et al., 2013). Given
that the CCI index did not show obvious differences between down-
stream and control sites in most regions, it suggests no difference in
overall conservation value, despite clear differences in community
composition.

Relatively few studies have used biomonitoring indices to examine
the effect of river impoundment. White et al. (2017a) reported that
LIFE and PSI differed significantly between sites downstream of im-
poundments and control sites, whereas Gillespie et al. (2015a) found
that only LIFE scores displayed a significant reduction due to regulation
and PSI scores did not. In marked contrast, Bilotta et al. (2017) reported
that small-scale run-of-river hydroelectric power schemes did not have
a significant effect on LIFE, PSI or WHPT scores at downstream sites.
These variable results may reflect differences in impoundment charac-
teristics and management.

6. Conclusion and study implications

This study represents one of the first large-scale multi-year compar-
isons between macroinvertebrate community structure and biomoni-
toring indices at monitoring sites downstream of water supply
reservoirs and paired control sites. We used an extensive dataset de-
rived from a national-scale routine biomonitoring network. Results
demonstrated consistent differences in macroinvertebrate community
structure between site types across spatial scales beyond individual res-
ervoirs (hypothesis 1), highlighting generalisable effects over space and
time that can be used by scientists and environmental regulators and
managers in future research and management activities. The influence
of other spatio-temporal variables including biogeography as key fac-
tors explaining differences at larger spatial scales was demonstrated.
Water supply reservoirs were found to dampen natural seasonal pat-
terns in downstreamcommunities. In addition, the impact ofwater sup-
ply reservoirs was observed using existing biomonitoring indices used
for river management purposes (hypothesis 2). This demonstrates
that univariate biomonitoring indices are a valuable tool for quantifying
the effects of river impoundment on instream macroinvertebrate
communities.

The need for transferable flow-ecology relationships to underpin
large- scale studies has been increasingly advocated (Zimmerman
et al., 2010; Webb et al., 2013). Our results highlighted a consistent re-
sponse to water supply reservoirs across different regions in England,
but also indicated a relatively lower predictive power at larger spatial
scales due to the associations of instream communities with other spa-
tial and temporal factors. Recent studies centred on macroinvertebrate
community responses to external drivers have applied the concept of
functional diversity alongside taxonomic community composition
(Tupinambás et al., 2014; White et al., 2017b). The use of functional
traits was beyond the scope of the current study, but may have the po-
tential to overcome the influence of confounding biogeographical fac-
tors in ecohydrological studies at larger spatial scales (Menezes et al.,
2010; Statzner and Bêche, 2010). However, we believe that by using
biomonitoring indices we have presented a promising alternative to
be applied in large-scale river impoundment research.

Further research using additional hydrology and water temperature
data, combined with information on reservoir operation characteristics
may help quantify the effects of flow and thermal alteration on macro-
invertebrate communities and enable the translation of regional results
into environmental flow prescriptions for individual reservoirs. Ulti-
mately, this research improves our understanding of the impact of
river impoundment on instream communities and provides guidance
for the implementation of more natural flow regimes downstream of
water supply reservoirs.
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