19 research outputs found

    Biocompatibility of mannan nanogel : safe interaction with plasma proteins

    Get PDF
    BACKGROUND: Self-assembled mannan nanogels are designed to provide a therapeutic or vaccine delivery platform based on the bioactive properties of mannan to target mannose receptor expressed on the surface of antigen-presenting cells, combined with the performance of nanogels as carriers of biologically active agents. METHODS: Proteins in the corona around mannan nanogel formed in human plasma were identified by mass spectrometry after size exclusion chromatography or centrifugation followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Structural changes and time dependent binding of human apolipoprotein A-I (apoA-I) and human serum albumin (HSA) to mannan nanogel were studied using intrinsic tryptophan fluorescence and circular dichroism spectroscopy. The mannan nanogel effect on blood coagulation and fibrillation of Alzheimer's disease-associated amyloid β peptide and hemodialysis-associated amyloidosis β2 microglobulin was evaluated using thrombin generation assay or thioflavin T fluorescence assay, respectively. RESULTS: The protein corona around mannan nanogel is formed through a slow process, is quite specific comprising apolipoproteins B-100, A-I and E and HSA, evolves over time, and the equilibrium is reached after hours to days. Structural changes and time dependent binding of apoA-I and HSA to mannan nanogel are minor. The mannan nanogel does not affect blood coagulation and retards the fibril formation. CONCLUSIONS: Mannan nanogel has a high biosafety and biocompatibility, which is mandatory for nanomaterials to be used in biomedical applications. GENERAL SIGNIFICANCE: Our research provides a molecular approach to evaluate the safety aspects of nanomaterials, which is of general concern in society and science.The authors thank the financial support by International Iberian Nanotechnology Laboratory (INL), Fundacao para a Ciencia e a Tecnologia (FCT, Portugal), through PTDC, European Science Foundation (ESF) for the activity entitled 'Mapping the detailed composition of Surface-Absorbed Protein Layers on Biomaterials and Nanoparticles', the Crafoord Foundation, and Lund and Nano Vaccine Center, Denmark. The NIPAM coated gold particle is a kind gift from Colloidal Chemistry Group from Vigo University, Spain

    Modeling the Time Evolution of the Nanoparticle-Protein Corona in a Body Fluid

    Get PDF
    Background: Nanoparticles in contact with biological fluids interact with proteins and other biomolecules, thus forming a dynamic corona whose composition varies over time due to continuous protein association and dissociation events. Eventually equilibrium is reached, at which point the continued exchange will not affect the composition of the corona. Results: We developed a simple and effective dynamic model of the nanoparticle protein corona in a body fluid, namely human plasma. The model predicts the time evolution and equilibrium composition of the corona based on affinities, stoichiometries and rate constants. An application to the interaction of human serum albumin, high density lipoprotein (HDL) and fibrinogen with 70 nm N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles is presented, including novel experimental data for HDL. Conclusions: The simple model presented here can easily be modified to mimic the interaction of the nanoparticle protein corona with a novel biological fluid or compartment once new data will be available, thus opening novel applications in nanotoxicity and nanomedicine

    Tensin3 Is a Negative Regulator of Cell Migration and All Four Tensin Family Members Are Downregulated in Human Kidney Cancer

    Get PDF
    BACKGROUND: The Tensin family of intracellular proteins (Tensin1, -2, -3 and -4) are thought to act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. Dysregulation of Tensin expression has previously been implicated in human cancer. Here, we have for the first time evaluated the significance of all four Tensins in a study of human renal cell carcinoma (RCC), as well as probed the biological function of Tensin3. PRINCIPAL FINDINGS: Expression of Tensin2 and Tensin3 at mRNA and protein levels was largely absent in a panel of diverse human cancer cell lines. Quantitative RT-PCR analysis revealed mRNA expression of all four Tensin genes to be significantly downregulated in human kidney tumors (50-100% reduction versus normal kidney cortex; P<0.001). Furthermore, the mRNA expressions of Tensins mostly correlated positively with each other and negatively with tumor grade, but not tumor size. Immunohistochemical analysis revealed Tensin3 to be present in the cytoplasm of tubular epithelium in normal human kidney sections, whilst expression was weaker or absent in 41% of kidney tumors. A subset of tumor sections showed a preferential plasma membrane expression of Tensin3, which in clear cell RCC patients was correlated with longer survival. Stable expression of Tensin3 in HEK 293 cells markedly inhibited both cell migration and matrix invasion, a function independent of putative phosphatase activity in Tensin3. Conversely, siRNA knockdown of endogenous Tensin3 in human cancer cells significantly increased their migration. CONCLUSIONS: Our findings indicate that the Tensins may represent a novel group of metastasis suppressors in the kidney, the loss of which leads to greater tumor cell motility and consequent metastasis. Moreover, tumorigenesis in the human kidney may be facilitated by a general downregulation of Tensins. Therefore, anti-metastatic therapies may benefit from restoring or preserving Tensin expression in primary tumors

    The regulation of blood coagulation by high-density lipoprotein particles

    No full text
    High-density lipoprotein (HDL) has anti-atherogenic properties and the plasma level of HDL cholesterol correlates inversely with the risk of coronary artery disease. The atheroprotective functions of HDL can be explained by its function in the reverse cholesterol transport. Blood coagulation is activated in response to tissue damage and involves a series of enzymatic protein complexes that assemble on the surface of anionic phospholipids, e.g. activated platelets. Lipoproteins contain a phospholipid surface, which may provide another phospholipid surface, other than platelets, that could stimulate the reactions of blood coagulation. Lipoproteins have been reported to have dual roles in the regulation of blood coagulation, therefore in this thesis the role of HDL in blood coagulation was investigated. HDL was studied in its ability to stimulate prothrombin activation. Anionic phospholipids lost their procoagulant function when incorporated into reconstituted HDL particles. The anionic phospholipids of these particles were unable to support binding to activated factor V (FVa). Serum was also shown to neutralize the procoagulant effect of anionic liposomes with transfer of phospholipids to both low-density lipoprotein (LDL) and HDL particles. The transfer of phospholipids was dependent on a catalytically active form of phospholipid transfer protein (PLTP). Total HDL, HDL3 and very high-density lipoprotein, all which contained endogenous PLTP, were all able to neutralize procoagulant liposomes. Addition of exogenous PLTP to either LDL or HDL2, which were both absent of endogenous PLTP, increased the neutralization of procoagulant liposomes. HDL has been reported to function as a cofactor to anticoagulant activated protein C (APC) in the degradation of FVa in the presence of protein S. HDL isolated by ultracentrifugation was found to stimulate the APC-mediated degradation of FVa. However, further purification of HDL by size-exclusion chromatography revealed that the stimulating activity was not a property of HDL but instead caused by contaminating anionic phospholipid membranes

    Polystyrene nanoparticles affecting blood coagulation.

    No full text
    Association of nanoparticles with blood coagulation proteins may influence the natural balance between pro-and anticoagulant pathways. We investigated whether polystyrene nanoparticles, when added to human plasma, affected the generation of thrombin in plasma. Amine-modified nanoparticles were found to decrease the thrombin formation due to binding of factor VII and IX to the nanoparticles, which resulted in depletion of the respective protein in solution. In contrast, carboxyl-modified nanoparticles were able to act as a surface for activation of the intrinsic pathway of blood coagulation in plasma. These results highlight the influence of nanoparticles on a biologically important pathway

    Downregulation of C1-TEN expression in human cancer

    No full text

    Structural Changes in Apolipoproteins Bound to Nanoparticles

    No full text
    Nanoparticles are widely used in the pharmaceutical and food industries, but the consequences of exposure to the human body have not been thoroughly investigated. Apolipoprotein A-I (apoAI), the major protein in high-density lipoprotein (HDL), and other lipoproteins are found in the corona around many nanopartides, but data on protein structural and functional effects are lacking. Here we investigate the structural consequences of the adsorption of apoAI, apolipoprotein B100 (apoB100), and HDL on polystyrene nanoparticles with different surface charges. The results of circular dichroism, fluorescence spectroscopy, and limited proteolysis experiments indicate effects on both secondary and tertiary structures. Plain and negatively charged nanoparticles induce helical structure in apoAI (negative net charge) whereas positively charged nanoparticles reduce the amount of helical structure. Plain and negatively charged partides induce a small blue shift in the tryptophan fluorescence spectrum, which is not noticed with the positively charged particles. Similar results are observed with reconstituted HDL. In apoB100, both secondary and tertiary structures are perturbed by all particles. To investigate the generality of the role of surface charge, parallel experiments were performed using human Serum albumin (HSA, negative net charge) and lysozyme (positive net charge). Again, the secondary structure is most affected by nanoparticles carrying an opposite surface charge relative to the protein. Nanoparticles carrying the same net charge as the protein induce only minor structural changes in lysozyme whereas a moderate change is observed for HSA. Thus, surface charge is a critical parameter for predicting structural changes in adsorbed proteins, yet the effect is specific for each protein
    corecore