17 research outputs found

    In-pandemic development of an application ontology for COVID-19 surveillance in a primary care sentinel network

    Get PDF
    Background: Creating an ontology for coronavirus disease 2019 (COVID-19) surveillance should help ensure transparency and consistency. Ontologies formalise conceptualisations at either domain or application level. Application ontologies cross domains and are specified through testable use cases. Our use case was extension of the role of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) to monitor the current pandemic and become an in-pandemic research platform. Objective: To develop an application ontology for COVID-19 which can be deployed across the various use case domains of the Oxford- RCGP RSC research and surveillance activities. Methods: We described our domain-specific use case. The actor was the RCGP RSC sentinel network; the system the course of the COVID-19 pandemic; the outcomes the spread and effect of mitigation measures. We used our established three-step method to develop the ontology, separating ontological concept development from code mapping and data extract validation. We developed a coding system–independent COVID-19 case identification algorithm. As there were no gold standard pandemic surveillance ontologies, we conducted a rapid Delphi consensus exercise through the International Medical Informatics Association (IMIA) Primary Health Care Informatics working group and extended networks. Results: Our use case domains included primary care, public health, virology, clinical research and clinical informatics. Our ontology supported: (1) Case identification, microbiological sampling and health outcomes at both an individual practice and national level; (2) Feedback through a dashboard; (3) A national observatory, (4) Regular updates for Public Health England, and (5) Transformation of the sentinel network to be a trial platform. We have identified a total of 8,627 people with a definite COVID-19 status, 4,240 with probable, and 59,147 people with possible COVID-19, within the RCGP RSC network (N=5,056,075). Conclusions: The underpinning structure of our ontological approach has coped with multiple clinical coding challenges. At a time when there is uncertainty about international comparisons, clarity about the basis on which case definitions and outcomes are made from routine data is essential

    End of 2022/23 season influenza vaccine effectiveness in primary care in Great Britain

    Get PDF
    Background The 2022/23 influenza season in the United Kingdom saw the return of influenza to prepandemic levels following two seasons with low influenza activity. The early season was dominated by A(H3N2), with cocirculation of A(H1N1), reaching a peak late December 2022, while influenza B circulated at low levels during the latter part of the season. From September to March 2022/23, influenza vaccines were offered, free of charge, to all aged 2–13 (and 14–15 in Scotland and Wales), adults up to 49 years of age with clinical risk conditions and adults aged 50 and above across the mainland United Kingdom. Methods End-of-season adjusted vaccine effectiveness (VE) estimates against sentinel primary-care attendance for influenza-like illness, where influenza infection was laboratory confirmed, were calculated using the test negative design, adjusting for potential confounders. Results In the mainland United Kingdom, end-of-season VE against all laboratory-confirmed influenza for all those > 65 years of age, most of whom received adjuvanted quadrivalent vaccines, was 30% (95% CI: −6% to 54%). VE for those aged 18–64, who largely received cell-based vaccines, was 47% (95% CI: 37%–56%). Overall VE for 2–17 year olds, predominantly receiving live attenuated vaccines, was 66% (95% CI: 53%–76%). Conclusion The paper provides evidence of moderate influenza VE in 2022/23

    Differences in Clinical Presentation With Long COVID After Community and Hospital Infection and Associations With All-Cause Mortality:English Sentinel Network Database Study

    No full text
    BACKGROUND: Most studies of long COVID (symptoms of COVID-19 infection beyond 4 weeks) have focused on people hospitalized in their initial illness. Long COVID is thought to be underrecorded in UK primary care electronic records. OBJECTIVE: We sought to determine which symptoms people present to primary care after COVID-19 infection and whether presentation differs in people who were not hospitalized, as well as post–long COVID mortality rates. METHODS: We used routine data from the nationally representative primary care sentinel cohort of the Oxford–Royal College of General Practitioners Research and Surveillance Centre (N=7,396,702), applying a predefined long COVID phenotype and grouped by whether the index infection occurred in hospital or in the community. We included COVID-19 infection cases from March 1, 2020, to April 1, 2021. We conducted a before-and-after analysis of long COVID symptoms prespecified by the Office of National Statistics, comparing symptoms presented between 1 and 6 months after the index infection matched with the same months 1 year previously. We conducted logistic regression analysis, quoting odds ratios (ORs) with 95% CIs. RESULTS: In total, 5.63% (416,505/7,396,702) and 1.83% (7623/416,505) of the patients had received a coded diagnosis of COVID-19 infection and diagnosis of, or referral for, long COVID, respectively. People with diagnosis or referral of long COVID had higher odds of presenting the prespecified symptoms after versus before COVID-19 infection (OR 2.66, 95% CI 2.46-2.88, for those with index community infection and OR 2.42, 95% CI 2.03-2.89, for those hospitalized). After an index community infection, patients were more likely to present with nonspecific symptoms (OR 3.44, 95% CI 3.00-3.95; P<.001) compared with after a hospital admission (OR 2.09, 95% CI 1.56-2.80; P<.001). Mental health sequelae were more strongly associated with index hospital infections (OR 2.21, 95% CI 1.64-2.96) than with index community infections (OR 1.36, 95% CI 1.21-1.53; P<.001). People presenting to primary care after hospital infection were more likely to be men (OR 1.43, 95% CI 1.25-1.64; P<.001), more socioeconomically deprived (OR 1.42, 95% CI 1.24-1.63; P<.001), and with higher multimorbidity scores (OR 1.41, 95% CI 1.26-1.57; P<.001) than those presenting after an index community infection. All-cause mortality in people with long COVID was associated with increasing age, male sex (OR 3.32, 95% CI 1.34-9.24; P=.01), and higher multimorbidity score (OR 2.11, 95% CI 1.34-3.29; P<.001). Vaccination was associated with reduced odds of mortality (OR 0.10, 95% CI 0.03-0.35; P<.001). CONCLUSIONS: The low percentage of people recorded as having long COVID after COVID-19 infection reflects either low prevalence or underrecording. The characteristics and comorbidities of those presenting with long COVID after a community infection are different from those hospitalized. This study provides insights into the presentation of long COVID in primary care and implications for workload

    Developing a Long COVID Phenotype for Postacute COVID-19 in a National Primary Care Sentinel Cohort:Observational Retrospective Database Analysis

    Get PDF
    BACKGROUND: Following COVID-19, up to 40% of people have ongoing health problems, referred to as postacute COVID-19 or long COVID (LC). LC varies from a single persisting symptom to a complex multisystem disease. Research has flagged that this condition is underrecorded in primary care records, and seeks to better define its clinical characteristics and management. Phenotypes provide a standard method for case definition and identification from routine data and are usually machine-processable. An LC phenotype can underpin research into this condition. OBJECTIVE: This study aims to develop a phenotype for LC to inform the epidemiology and future research into this condition. We compared clinical symptoms in people with LC before and after their index infection, recorded from March 1, 2020, to April 1, 2021. We also compared people recorded as having acute infection with those with LC who were hospitalized and those who were not. METHODS: We used data from the Primary Care Sentinel Cohort (PCSC) of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) database. This network was recruited to be nationally representative of the English population. We developed an LC phenotype using our established 3-step ontological method: (1) ontological step (defining the reasoning process underpinning the phenotype, (2) coding step (exploring what clinical terms are available, and (3) logical extract model (testing performance). We created a version of this phenotype using Protégé in the ontology web language for BioPortal and using PhenoFlow. Next, we used the phenotype to compare people with LC (1) with regard to their symptoms in the year prior to acquiring COVID-19 and (2) with people with acute COVID-19. We also compared hospitalized people with LC with those not hospitalized. We compared sociodemographic details, comorbidities, and Office of National Statistics–defined LC symptoms between groups. We used descriptive statistics and logistic regression. RESULTS: The long-COVID phenotype differentiated people hospitalized with LC from people who were not and where no index infection was identified. The PCSC (N=7.4 million) includes 428,479 patients with acute COVID-19 diagnosis confirmed by a laboratory test and 10,772 patients with clinically diagnosed COVID-19. A total of 7471 (1.74%, 95% CI 1.70-1.78) people were coded as having LC, 1009 (13.5%, 95% CI 12.7-14.3) had a hospital admission related to acute COVID-19, and 6462 (86.5%, 95% CI 85.7-87.3) were not hospitalized, of whom 2728 (42.2%) had no COVID-19 index date recorded. In addition, 1009 (13.5%, 95% CI 12.73-14.28) people with LC were hospitalized compared to 17,993 (4.5%, 95% CI 4.48-4.61; P<.001) with uncomplicated COVID-19. CONCLUSIONS: Our LC phenotype enables the identification of individuals with the condition in routine data sets, facilitating their comparison with unaffected people through retrospective research. This phenotype and study protocol to explore its face validity contributes to a better understanding of LC

    The impact of point-of-care testing for influenza on antimicrobial stewardship (PIAMS) in UK primary care: protocol for a mixed methods study

    No full text
    Background: molecular point-of-care testing (POCT) used in primary care can inform whether a patient presenting with an acute respiratory infection has influenza. A confirmed clinical diagnosis, particularly early in the disease, could inform better antimicrobial stewardship. Social distancing and lockdowns during the COVID-19 pandemic have disturbed previous patterns of influenza infections in 2021. However, data from samples taken in the last quarter of 2022 suggest that influenza represents 36% of sentinel network positive virology, compared with 24% for respiratory syncytial virus. Problems with integration into the clinical workflow is a known barrier to incorporating technology into routine care.Objective: this study aims to report the impact of POCT for influenza on antimicrobial prescribing in primary care. We will additionally describe severe outcomes of infection (hospitalization and mortality) and how POCT is integrated into primary care workflows.Methods: the impact of POCT for influenza on antimicrobial stewardship (PIAMS) in UK primary care is an observational study being conducted between December 2022 and May 2023 and involving 10 practices that contribute data to the English sentinel network. Up to 1000 people who present to participating practices with respiratory symptoms will be swabbed and tested with a rapid molecular POCT analyzer in the practice. Antimicrobial prescribing and other study outcomes will be collected by linking information from the POCT analyzer with data from the patient’s computerized medical record. We will collect data on how POCT is incorporated into practice using data flow diagrams, unified modeling language use case diagrams, and Business Process Modeling Notation.Results: we will present the crude and adjusted odds of antimicrobial prescribing (all antibiotics and antivirals) given a POCT diagnosis of influenza, stratifying by whether individuals have a respiratory or other relevant diagnosis (eg, bronchiectasis). We will also present the rates of hospital referrals and deaths related to influenza infection in PIAMS study practices compared with a set of matched practices in the sentinel network and the rest of the network. We will describe any difference in implementation models in terms of staff involved and workflow.Conclusions: this study will generate data on the impact of POCT testing for influenza in primary care as well as help to inform about the feasibility of incorporating POCT into primary care workflows. It will inform the design of future larger studies about the effectiveness and cost-effectiveness of POCT to improve antimicrobial stewardship and any impact on severe outcomes

    COVID-19 Surveillance in a Primary Care Sentinel Network: In-Pandemic Development of an Application Ontology

    No full text
    Background: Creating an ontology for coronavirus disease 2019 (COVID-19) surveillance should help ensure transparency and consistency. Ontologies formalise conceptualisations at either domain or application level. Application ontologies cross domains and are specified through testable use cases. Our use case was extension of the role of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) to monitor the current pandemic and become an in-pandemic research platform. Objective: To develop an application ontology for COVID-19 which can be deployed across the various use case domains of the Oxford- RCGP RSC research and surveillance activities. Methods: We described our domain-specific use case. The actor was the RCGP RSC sentinel network; the system the course of the COVID-19 pandemic; the outcomes the spread and effect of mitigation measures. We used our established three-step method to develop the ontology, separating ontological concept development from code mapping and data extract validation. We developed a coding system–independent COVID-19 case identification algorithm. As there were no gold standard pandemic surveillance ontologies, we conducted a rapid Delphi consensus exercise through the International Medical Informatics Association (IMIA) Primary Health Care Informatics working group and extended networks. Results: Our use case domains included primary care, public health, virology, clinical research and clinical informatics. Our ontology supported: (1) Case identification, microbiological sampling and health outcomes at both an individual practice and national level; (2) Feedback through a dashboard; (3) A national observatory, (4) Regular updates for Public Health England, and (5) Transformation of the sentinel network to be a trial platform. We have identified a total of 8,627 people with a definite COVID-19 status, 4,240 with probable, and 59,147 people with possible COVID-19, within the RCGP RSC network (N=5,056,075). Conclusions: The underpinning structure of our ontological approach has coped with multiple clinical coding challenges. At a time when there is uncertainty about international comparisons, clarity about the basis on which case definitions and outcomes are made from routine data is essential

    Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: a cross-sectional study

    No full text
    BACKGROUND: There are few primary care studies of the COVID-19 pandemic. We aimed to identify demographic and clinical risk factors for testing positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre primary care network. METHODS: We analysed routinely collected, pseudonymised data for patients in the RCGP Research and Surveillance Centre primary care sentinel network who were tested for SARS-CoV-2 between Jan 28 and April 4, 2020. We used multivariable logistic regression models with multiple imputation to identify risk factors for positive SARS-CoV-2 tests within this surveillance network. FINDINGS: We identified 3802 SARS-CoV-2 test results, of which 587 were positive. In multivariable analysis, male sex was independently associated with testing positive for SARS-CoV-2 (296 [18·4%] of 1612 men vs 291 [13·3%] of 2190 women; adjusted odds ratio [OR] 1·55, 95% CI 1·27–1·89). Adults were at increased risk of testing positive for SARS-CoV-2 compared with children, and people aged 40–64 years were at greatest risk in the multivariable model (243 [18·5%] of 1316 adults aged 40–64 years vs 23 [4·6%] of 499 children; adjusted OR 5·36, 95% CI 3·28–8·76). Compared with white people, the adjusted odds of a positive test were greater in black people (388 [15·5%] of 2497 white people vs 36 [62·1%] of 58 black people; adjusted OR 4·75, 95% CI 2·65–8·51). People living in urban areas versus rural areas (476 [26·2%] of 1816 in urban areas vs 111 [5·6%] of 1986 in rural areas; adjusted OR 4·59, 95% CI 3·57–5·90) and in more deprived areas (197 [29·5%] of 668 in most deprived vs 143 [7·7%] of 1855 in least deprived; adjusted OR 2·03, 95% CI 1·51–2·71) were more likely to test positive. People with chronic kidney disease were more likely to test positive in the adjusted analysis (68 [32·9%] of 207 with chronic kidney disease vs 519 [14·4%] of 3595 without; adjusted OR 1·91, 95% CI 1·31–2·78), but there was no significant association with other chronic conditions in that analysis. We found increased odds of a positive test among people who are obese (142 [20·9%] of 680 people with obesity vs 171 [13·2%] of 1296 normal-weight people; adjusted OR 1·41, 95% CI 1·04–1·91). Notably, active smoking was linked with decreased odds of a positive test result (47 [11·4%] of 413 active smokers vs 201 [17·9%] of 1125 non-smokers; adjusted OR 0·49, 95% CI 0·34–0·71). INTERPRETATION: A positive SARS-CoV-2 test result in this primary care cohort was associated with similar risk factors as observed for severe outcomes of COVID-19 in hospital settings, except for smoking. We provide evidence of potential sociodemographic factors associated with a positive test, including deprivation, population density, ethnicity, and chronic kidney disease

    Sociodemographic disparities in COVID-19 seroprevalence across England in the Oxford RCGP primary care sentinel network

    No full text
    Objectives To monitor changes in seroprevalence of SARS-CoV-2 antibodies in populations over time and between different demographic groups. Methods A subset of practices in the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network provided serum samples, collected when volunteer patients had routine blood tests. We tested these samples for SARS-CoV-2 antibodies using Abbott (Chicago, USA), Roche (Basel, Switzerland) and/or Euroimmun (Luebeck, Germany) assays, and linked the results to the patients’ primary care computerised medical records. We report seropositivity by region and age group, and additionally examined the effects of gender, ethnicity, deprivation, rurality, shielding recommendation and smoking status. Results We estimated seropositivity from patients aged 18-100 years old, which ranged from 4.1% (95% CI 3.1–5.3%) to 8.9% (95% CI 7.8–10.2%) across the different assays and time periods. We found higher Euroimmun seropositivity in younger age groups, people of Black and Asian ethnicity (compared to white), major conurbations, and non-smokers. We did not observe any significant effect by region, gender, deprivation, or shielding recommendation. Conclusions Our results suggest that prior to the vaccination programme, most of the population remained unexposed to SARS-CoV-2
    corecore