16 research outputs found

    Three-dimensional quasistatic model for high brightness beam dynamics simulation,” Phys

    Get PDF
    In this paper, we present a three-dimensional quasistatic model for high brightness beam dynamics simulation in rf/dc photoinjectors, rf linacs, and similar devices on parallel computers. In this model, electrostatic space-charge forces within a charged particle beam are calculated self-consistently at each time step by solving the three-dimensional Poisson equation in the beam frame and then transforming back to the laboratory frame. When the beam has a large energy spread, it is divided into a number of energy bins or slices so that the space-charge forces are calculated from the contribution of each bin and summed together. Image-charge effects from conducting photocathode are also included efficiently using a shifted-Green function method. For a beam with large aspect ratio, e.g., during emission, an integrated Green function method is used to solve the three-dimensional Poisson equation. Using this model, we studied beam transport in one Linac Coherent Light Sources photoinjector design through the first traveling wave linac with initial misalignment with respect to the accelerating axis

    Three-dimensional quasistatic model for high brightness beam dynamics simulation

    No full text
    In this paper, we present a three-dimensional quasistatic model for high brightness beam dynamics simulation in rf/dc photoinjectors, rf linacs, and similar devices on parallel computers. In this model, electrostatic space-charge forces within a charged particle beam are calculated self-consistently at each time step by solving the three-dimensional Poisson equation in the beam frame and then transforming back to the laboratory frame. When the beam has a large energy spread, it is divided into a number of energy bins or slices so that the space-charge forces are calculated from the contribution of each bin and summed together. Image-charge effects from conducting photocathode are also included efficiently using a shifted-Green function method. For a beam with large aspect ratio, e.g., during emission, an integrated Green function method is used to solve the three-dimensional Poisson equation. Using this model, we studied beam transport in one Linac Coherent Light Sources photoinjector design through the first traveling wave linac with initial misalignment with respect to the accelerating axis

    A Three-Dimensional Quasi-Static Model for High Brightness Beam Dynamics Simulation

    Get PDF
    In this paper, we present a three-dimensional quasistatic model for high brightness beam dynamics simulation in rf/dc photoinjectors, rf linacs, and similar devices on parallel computers. In this model, electrostatic space-charge forces within a charged particle beam are calculated self-consistently at each time step by solving the three-dimensional Poisson equation in the beam frame and then transforming back to the laboratory frame. When the beam has a large energy spread, it is divided into a number of energy bins or slices so that the space-charge forces are calculated from the contribution of each bin and summed together. Image-charge effects from conducting photocathode are also included efficiently using a shifted-Green function method. For a beam with large aspect ratio, e.g., during emission, an integrated Green function method is used to solve the three-dimensional Poisson equation. Using this model, we studied beam transport in one Linac Coherent Light Sources photoinjector design through the first traveling wave linac with initial misalignment with respect to the accelerating axis.cthin a range of a few KeV to about 10 KeV

    SLAC-PUB-14367 A Low-Charge, Hard X-Ray FEL Driven with an X-band Injector and Accelerator

    No full text
    After the successful operation of FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source), soft and hard X-ray Free Electron Lasers (FELs) are being built, designed or proposed at many accelerator laboratories. Acceleration employing lower frequency RF cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic RF system is employed to linearize the beam’s longitudinal phase space, which is nonlinearly chirped during the lower frequency RF acceleration process. In this paper, a hard X-ray FEL design using an all X-band accelerator at 11.424 GHz (from photo-cathod RF gun to linac end) is presented, without the assistance of any harmonic RF linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (RMS), low charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macro-particle 3-D simulation employing several computer codes is presented in this paper, where space charge, wakefields, incoherent and coherent synchrotron radiation (ISR and CSR) effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.
    corecore