2,589 research outputs found

    Should we use early less invasive hemodynamic monitoring in unstable ICU patients?

    Get PDF
    In the previous issue of Critical Care, Takala and colleagues presented the results of a multicenter study to investigate whether the early presence of less invasive hemodynamic monitoring improves outcome in patients admitted with hemodynamic instability to the intensive care unit. The authors' results suggest that it makes no difference. We discuss these findings and compare them to the literature on early goal-directed therapy in which monitors are used early but with a protocol

    Cell-free DNA and outcome in sepsis.

    Get PDF
    Severe sepsis can be a catastrophic condition that is often associated with poor outcomes. The early diagnosis and management of the condition are vital in order to improve the chances of survival. However, owing to the syndromal nature of its definition and the lack of a biomarker able to accurately confirm the condition, the diagnosis of sepsis is challenging. Even more challenging is the prediction of how these patients will respond to the therapy and whether they will survive the intensive care and the hospital admission

    What role does the right side of the heart play in circulation?

    Get PDF
    Right ventricular failure (RVF) is an underestimated problem in intensive care. This review explores the physiology and pathophysiology of right ventricular function and the pulmonary circulation. When RVF is secondary to an acute increase in afterload, the picture is one of acute cor pulmonale, as occurs in the context of acute respiratory distress syndrome, pulmonary embolism and sepsis. RVF can also be caused by right myocardial dysfunction. Pulmonary arterial catheterization and echocardiography are discussed in terms of their roles in diagnosis and treatment. Treatments include options to reduce right ventricular afterload, specific pulmonary vasodilators and inotropes

    Understanding the dependence on the pulling speed of the unfolding pathway of proteins

    Full text link
    The dependence of the unfolding pathway of proteins on the pulling speed is investigated. This is done by introducing a simple one-dimensional chain comprising NN units, with different characteristic bistable free energies. These units represent either each of the modules in a modular protein or each of the intermediate "unfoldons" in a protein domain, which can be either folded or unfolded. The system is pulled by applying a force to the last unit of the chain, and the units unravel following a preferred sequence. We show that the unfolding sequence strongly depends on the pulling velocity vpv_{p}. In the simplest situation, there appears a critical pulling speed vcv_{c}: for pulling speeds vpvcv_{p}v_{c} it is the pulled unit that unfolds first. By means of a perturbative expansion, we find quite an accurate expression for this critical velocity.Comment: accepted for publication in JSTA

    Thermally induced directed currents in hard rod systems

    Full text link
    We study the non equilibrium statistical properties of a one dimensional hard-rod fluid undergoing collisions and subject to a spatially non uniform Gaussian heat-bath and periodic potential. The system is able to sustain finite currents when the spatially inhomogeneous heat-bath and the periodic potential profile display an appropriate relative phase shift, Ď•\phi. By comparison with the collisionless limit, we determine the conditions for the most efficient transport among inelastic, elastic and non interacting rods. We show that the situation is complex as, depending on shape of the temperature profile, the current of one system may outperform the others.Comment: 5 pages, 2 figure

    The inelastic Takahashi hard-rod gas

    Full text link
    We study a one-dimensional fluid of hard-rods interacting each other via binary inelastic collisions and a short ranged square-well potential. Upon tuning the depth and the sign of the well, we investigate the interplay between dissipation and cohesive or repulsive forces. Molecular dynamics simulations of the cooling regime indicate that the presence of this simple interparticle interaction is sufficient to significantly modify the energy dissipation rates expected by the Haff's law for the free cooling. The simplicity of the model makes it amenable to an analytical approach based on the Boltzmann-Enskog transport equation which allows deriving the behaviour of the granular temperature. Furthermore, in the elastic limit, the model can be solved exactly to provide a full thermodynamic description. A meaningful theoretical approximation explaining the properties of the inelastic system in interaction with a thermal bath can be directly extrapolated from the properties of the corresponding elastic system, upon a proper re-definition of the relevant observables. Simulation results both in the cooling and driven regime can be fairly interpreted according to our theoretical approach and compare rather well to our predictions.Comment: 14 pages RevTex, 9 eps figure
    • …
    corecore