1,245 research outputs found

    Radio emission from satellite-Jupiter interactions (especially Ganymede)

    Full text link
    Analyzing a database of 26 years of observations of Jupiter from the Nan\c{c}ay Decameter Array, we study the occurrence of Io-independent emissions as a function of the orbital phase of the other Galilean satellites and Amalthea. We identify unambiguously the emissions induced by Ganymede and characterize their intervals of occurrence in CML and Ganymede phase and longitude. We also find hints of emissions induced by Europa and, surprisingly, by Amalthea. The signature of Callisto-induced emissions is more tenuous.Comment: 14 pages, 7 figures, in "Planetary Radio Emissions VIII", G. Fischer, G. Mann, M. Panchenko and P. Zarka eds., Austrian Acad. Sci. Press, Vienna, in press, 201

    N-tree approximation for the largest Lyapunov exponent of a coupled-map lattice

    Full text link
    The N-tree approximation scheme, introduced in the context of random directed polymers, is here applied to the computation of the maximum Lyapunov exponent in a coupled map lattice. We discuss both an exact implementation for small tree-depth nn and a numerical implementation for larger nns. We find that the phase-transition predicted by the mean field approach shifts towards larger values of the coupling parameter when the depth nn is increased. We conjecture that the transition eventually disappears.Comment: RevTeX, 15 pages,5 figure

    Comparison of voter and Glauber ordering dynamics on networks

    Full text link
    We study numerically the ordering process of two very simple dynamical models for a two-state variable on several topologies with increasing levels of heterogeneity in the degree distribution. We find that the zero-temperature Glauber dynamics for the Ising model may get trapped in sets of partially ordered metastable states even for finite system size, and this becomes more probable as the size increases. Voter dynamics instead always converges to full order on finite networks, even if this does not occur via coherent growth of domains. The time needed for order to be reached diverges with the system size. In both cases the ordering process is rather insensitive to the variation of the degreee distribution from sharply peaked to scale-free.Comment: 12 pages, 12 figure

    In-flight calibration of STEREO-B/WAVES antenna system

    Full text link
    The STEREO/WAVES (SWAVES) experiment on board the two STEREO spacecraft (Solar Terrestrial Relations Observatory) launched on 25 October 2006 is dedicated to the measurement of the radio spectrum at frequencies between a few kilohertz and 16 MHz. The SWAVES antenna system consists of 6 m long orthogonal monopoles designed to measure the electric component of the radio waves. With this configuration direction finding of radio sources and polarimetry (analysis of the polarization state) of incident radio waves is possible. For the evaluation of the SWAVES data the receiving properties of the antennas, distorted by the radiation coupling with the spacecraft body and other onboard devices, have to be known accurately. In the present context, these properties are described by the antenna effective length vectors. We present the results of an in-flight calibration of the SWAVES antennas using the observations of the nonthermal terrestrial auroral kilometric radiation (AKR) during STEREO roll maneuvers in an early stage of the mission. A least squares method combined with a genetic algorithm was applied to find the effective length vectors of the STEREO Behind (STEREO-B)/WAVES antennas in a quasi-static frequency range (Lantennaâ‰ȘλwaveL_{antenna} \ll \lambda_{wave}) which fit best to the model and observed AKR intensity profiles. The obtained results confirm the former SWAVES antenna analysis by rheometry and numerical simulations. A final set of antenna parameters is recommended as a basis for evaluations of the SWAVES data

    Jupiter radio emission probability tool

    Get PDF
    Jupiter is a source of intense radio emissions in the decametric wavelength range observable from ground (above ∌10 MHz) and from space (down to a few kHz). The strong anisotropy of the Jovian radio sources results in characteristic shapes in the temporal-spectral domain, which can be used to identified the various types of Jovian radio components. The Jupiter Probability Tool provides users with Jovian radio emission observability predictions, depending on the observers location, and the radio emission class. The application can be used for observation planning or data analysis for ground or space observations

    The complex conformational dynamics of neuronal calcium sensor-1: A single molecule perspective

    Get PDF
    The human neuronal calcium sensor-1 (NCS-1) is a multispecific two-domain EF-hand protein expressed predominantly in neurons and is a member of the NCS protein family. Structure-function relationships of NCS-1 have been extensively studied showing that conformational dynamics linked to diverse ion-binding is important to its function. NCS-1 transduces Ca 2+ changes in neurons and is linked to a wide range of neuronal functions such as regulation of neurotransmitter release, voltage-gated Ca 2+ channels and neuronal outgrowth. Defective NCS-1 can be deleterious to cells and has been linked to serious neuronal disorders like autism. Here, we review recent studies describing at the single molecule level the structural and mechanistic details of the folding and misfolding processes of the non-myristoylated NCS-1. By manipulating one molecule at a time with optical tweezers, the conformational equilibria of the Ca 2+ -bound, Mg 2+ -bound and apo states of NCS-1 were investigated revealing a complex folding mechanism underlain by a rugged and multidimensional energy landscape. The molecular rearrangements that NCS-1 undergoes to transit from one conformation to another and the energetics of these reactions are tightly regulated by the binding of divalent ions (Ca 2+ and Mg 2+ ) to its EF-hands. At pathologically high Ca 2+ concentrations the protein sometimes follows non-productive misfolding pathways leading to kinetically trapped and potentially harmful misfolded conformations. We discuss the significance of these misfolding events as well as the role of inter-domain interactions in shaping the energy landscape and ultimately the biological function of NCS-1. The conformational equilibria of NCS-1 are also compared to those of calmodulin (CaM) and differences and similarities in the behavior of these proteins are rationalized in terms of structural properties

    Planetary Science Virtual Observatory architecture

    Full text link
    In the framework of the Europlanet-RI program, a prototype of Virtual Observatory dedicated to Planetary Science was defined. Most of the activity was dedicated to the elaboration of standards to retrieve and visualize data in this field, and to provide light procedures to teams who wish to contribute with on-line data services. The architecture of this VO system and selected solutions are presented here, together with existing demonstrators
    • 

    corecore