209 research outputs found

    Extended radio emission in BL Lac objects - I: the images

    Get PDF
    We have observed 28 sources selected from the 1Jy sample of BL Lac objects (Stickel et al. 1991) with the Very Large Array (VLA) in A, B and D configurations at 1.36, 1.66 and 4.85 GHz, and/or with the Westerbork Synthesis Radio Telescope (WSRT) at 1.40 GHz. In this paper we present high sensitivity images at arcsecond resolution of the 18 objects showing extended structure in our images, and of another source from the FIRST (Faint Images of the Radio Sky at Twenty-cm) survey (Becker et al. 1995). In general our high sensitivity images reveal an amount of extended emission larger than previously reported. In some objects the luminosity of the extended structure is comparable with that of FR~II radio sources. A future paper will be devoted to the interpretation of these results.Comment: 12 pages, 35 figures, to appear on A&A Supp. Ser., postscript file with figures included available at http://www.ira.noto.cnr.it/staff/carlo/ds1030.ps.g

    2-10 keV luminosity of high-mass binaries as a gauge of ongoing star-formation rate

    Get PDF
    Based on recent work on spectral decomposition of the emission of star-forming galaxies, we assess whether the integrated 2-10 keV emission from high-mass X-ray binaries (HMXBs), L_{2-10}^{HMXB}, can be used as a reliable estimator of ongoing star formation rate (SFR). Using a sample of 46 local (z < 0.1) star forming galaxies, and spectral modeling of ASCA, BeppoSAX, and XMM-Newton data, we demonstrate the existence of a linear SFR-L_{2-10}^{HMXB} relation which holds over ~5 decades in X-ray luminosity and SFR. The total 2-10 keV luminosity is not a precise SFR indicator because at low SFR (i.e., in normal and moderately-starbursting galaxies) it is substantially affected by the emission of low-mass X-ray binaries, which do not trace the current SFR due to their long evolution lifetimes, while at very high SFR (i.e., for very luminous FIR-selected galaxies) it is frequently affected by the presence of strongly obscured AGNs. The availability of purely SB-powered galaxies - whose 2-10 keV emission is mainly due to HMXBs - allows us to properly calibrate the SFR-L_{2-10}^{HMXB} relation. The SFR-L_{2-10}^{HMXB} relation holds also for distant (z ~ 1) galaxies in the Hubble Deep Field North sample, for which we lack spectral information, but whose SFR can be estimated from deep radio data. If confirmed by more detailed observations, it may be possible to use the deduced relation to identify distant galaxies that are X-ray overluminous for their (independently estimated) SFR, and are therefore likely to hide strongly absorbed AGNs.Comment: Astronomy & Astrophysics, in press (15 pages, 7 figures, 4 tables

    Weak Lensing Detection of Cl 1604+4304 at z = 0.90

    Full text link
    We present a weak lensing analysis of the high-redshift cluster Cl 1604+4304. At z=0.90, this is the highest-redshift cluster yet detected with weak lensing. It is also one of a sample of high-redshift, optically-selected clusters whose X-ray temperatures are lower than expected based on their velocity dispersions. Both the gas temperature and galaxy velocity dispersion are proxies for its mass, which can be determined more directly by a lensing analysis. Modeling the cluster as a singular isothermal sphere, we find that the mass contained within projected radius R is 3.69+-1.47 * (R/500 kpc) 10^14 M_odot. This corresponds to an inferred velocity dispersion of 1004+-199 km/s, which agrees well with the measured velocity dispersion of 989+98-76 km/s (Gal & Lubin 2004). These numbers are higher than the 575+110-85 km/s inferred from Cl 1604+4304 X-ray temperature, however all three velocity dispersion estimates are consistent within ~ 1.9 sigma.Comment: Revised version accepted for publication in AJ (January 2005). 2 added figures (6 figures total

    New X-ray Clusters in the EMSS II: Optical Properties

    Full text link
    We present optical images for 9 new clusters of galaxies we have found in a reanalysis of the Einstein IPC images comprising the Extended Medium Sensitivity Survey (EMSS). Based on the presence of a red sequence of galaxies in a color-magnitude (CM) diagram, a redshift is estimated for each cluster. Galaxy overdensities (cluster richnesses) are measured in each field using the B_gc statistic which allows their plausible identification with the X-ray emission. The nature of our X-ray detection algorithm suggests that most of these clusters have low X-ray surface brightness (LSB) compared to the previously known EMSS clusters. We compare the optical and X-ray observations of these clusters with the well-studied Canadian Network for Observational Cosmology (CNOC) subsample of the EMSS, and conclude that the new clusters exhibit a similar range of optical richnesses, X-ray luminosities, and, somewhat surprisingly, galaxy populations as the predominantly rich, relaxed EMSS/CNOC clusters.Comment: Accepted to ApJ, 17 pages, 14 figures, uses emulateapj5.st

    1WGAJ1226.9+3332: a high redshift cluster discovered by Chandra

    Get PDF
    We report the detection of 1WGAJ1226.9+3332 as an arcminute scale extended X-ray source with the Chandra X-ray Observatory. The Chandra observation and R and K band imaging strongly support the identification of 1WGAJ1226.9+3332 as a high redshift cluster of galaxies, most probably at z=0.85 +- 0.15, with an inferred temperature kT =10 (+4;-3) keV and an unabsorbed luminosity (in a r=120" aperture) of 1.3 (+0.16;-0.14) x 1e45 erg/s (0.5-10 keV). This indication of redshift is also supported by the K and R band imaging, and is in agreement with the spectroscopic redshift of 0.89 found by Ebeling et al. (2001). The surface brightness profile is consistent with a beta-model with beta=0.770 +- 0.025, rc=(18.1 +-0.9)" (corresponding to 101 +- 5 kpc at z=0.89), and S(0)=1.02 +- 0.08 counts/arcsec**2. 1WGAJ1226.9+3332 was selected as an extreme X-ray loud source with FX/FV>60; this selection method, thanks to the large area sampled, seems to be a highly efficient method for finding luminous high z clusters of galaxies.Comment: 5 pages, 5 figures, 1 table. Accepted for publication in ApJ main journal. Uses emulateapj.st
    corecore