5 research outputs found

    Variational quantum circuits for machine learning. An application for the detection of weak signals

    Get PDF
    [EN] Featured Application Quantum classifier to detect weak signals. Quantum computing is a new paradigm for a multitude of computing applications. This study presents the technologies that are currently available for the physical implementation of qubits and quantum gates, establishing their main advantages and disadvantages and the available frameworks for programming and implementing quantum circuits. One of the main applications for quantum computing is the development of new algorithms for machine learning. In this study, an implementation of a quantum circuit based on support vector machines (SVMs) is described for the resolution of classification problems. This circuit is specially designed for the noisy intermediate-scale quantum (NISQ) computers that are currently available. As an experiment, the circuit is tested on a real quantum computer based on superconducting qubits for an application to detect weak signals of the future. Weak signals are indicators of incipient changes that will have a future impact. Even for experts, the detection of these events is complicated since it is too early to predict this impact. The data obtained with the experiment shows promising results but also confirms that ongoing technological development is still required to take full advantage of quantum computing.Griol-Barres, I.; Milla, S.; Cebrián Ferriols, AJ.; Mansoori, Y.; Millet Roig, J. (2021). Variational quantum circuits for machine learning. An application for the detection of weak signals. Applied Sciences. 11(14):1-22. https://doi.org/10.3390/app11146427S122111

    Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing

    Full text link
    [EN] Organizations, companies and start-ups need to cope with constant changes on the market which are difficult to predict. Therefore, the development of new systems to detect significant future changes is vital to make correct decisions in an organization and to discover new opportunities. A system based on business intelligence techniques is proposed to detect weak signals, that are related to future transcendental changes. While most known solutions are based on the use of structured data, the proposed system quantitatively detects these signals using heterogeneous and unstructured information from scientific, journalistic and social sources, applying text mining to analyze the documents and natural language processing to extract accurate results. The main contributions are that the system has been designed for any field, using different input datasets of documents, and with an automatic classification of categories for the detected keywords. In this research paper, results from the future of remote sensors are presented. Remote sensing services are providing new applications in observation and analysis of information remotely. This market is projected to witness a significant growth due to the increasing demand for services in commercial and defense industries. The system has obtained promising results, evaluated with two different methodologies, to help experts in the decision-making process and to discover new trends and opportunities.This research is partially supported by EIT Climate-KIC of the European Institute of Technology (project EIT Climate-KIC Accelerator-TC_3.1.5_190607_P066-1A) and InnoCENS from Erasmus + (573965-EPP-1-2016-1-SE-EPPKA2-CBHE-JP).Griol-Barres, I.; Milla, S.; Cebrián Ferriols, AJ.; Fan, H.; Millet Roig, J. (2020). Detecting Weak Signals of the Future: A System Implementation Based on Text Mining and Natural Language Processing. Sustainability. 12(19):1-21. https://doi.org/10.3390/su12197848S1211219Zahra, S. A., Gedajlovic, E., Neubaum, D. O., & Shulman, J. M. (2009). A typology of social entrepreneurs: Motives, search processes and ethical challenges. Journal of Business Venturing, 24(5), 519-532. doi:10.1016/j.jbusvent.2008.04.007Ansoff, H. I. (1975). Managing Strategic Surprise by Response to Weak Signals. California Management Review, 18(2), 21-33. doi:10.2307/41164635Report on Weak Signals Collection. TELMAP, European Commission Seventh Framework Project (IST-257822) https://cordis.europa.eu/docs/projects/cnect/2/257822/080/deliverables/001-D41Weaksignalscollectionfinal.docDator, J. (2005). Universities without «quality» and quality without «universities». On the Horizon, 13(4), 199-215. doi:10.1108/10748120510627321Hiltunen, E. (2008). The future sign and its three dimensions. Futures, 40(3), 247-260. doi:10.1016/j.futures.2007.08.021Thorleuchter, D., Scheja, T., & Van den Poel, D. (2014). Semantic weak signal tracing. Expert Systems with Applications, 41(11), 5009-5016. doi:10.1016/j.eswa.2014.02.046Julien, P.-A., Andriambeloson, E., & Ramangalahy, C. (2004). Networks, weak signals and technological innovations among SMEs in the land-based transportation equipment sector. Entrepreneurship & Regional Development, 16(4), 251-269. doi:10.1080/0898562042000263249Xindong Wu, Xingquan Zhu, Gong-Qing Wu, & Wei Ding. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97-107. doi:10.1109/tkde.2013.109Koivisto, R., Kulmala, I., & Gotcheva, N. (2016). Weak signals and damage scenarios — Systematics to identify weak signals and their sources related to mass transport attacks. Technological Forecasting and Social Change, 104, 180-190. doi:10.1016/j.techfore.2015.12.010Davis, J., & Groves, C. (2019). City/future in the making: Masterplanning London’s Olympic legacy as anticipatory assemblage. Futures, 109, 13-23. doi:10.1016/j.futures.2019.04.002Irvine, N., Nugent, C., Zhang, S., Wang, H., & NG, W. W. Y. (2019). Neural Network Ensembles for Sensor-Based Human Activity Recognition Within Smart Environments. Sensors, 20(1), 216. doi:10.3390/s20010216Huang, M., & Liu, Z. (2019). Research on Mechanical Fault Prediction Method Based on Multifeature Fusion of Vibration Sensing Data. Sensors, 20(1), 6. doi:10.3390/s20010006Awan, F. M., Saleem, Y., Minerva, R., & Crespi, N. (2020). A Comparative Analysis of Machine/Deep Learning Models for Parking Space Availability Prediction. Sensors, 20(1), 322. doi:10.3390/s20010322MohamadiBaghmolaei, R., Mozafari, N., & Hamzeh, A. (2017). Continuous states latency aware influence maximization in social networks. AI Communications, 30(2), 99-116. doi:10.3233/aic-170720McGrath, J., & Fischetti, J. (2019). What if compulsory schooling was a 21st century invention? Weak signals from a systematic review of the literature. International Journal of Educational Research, 95, 212-226. doi:10.1016/j.ijer.2019.02.006Chao, W., Jiang, X., Luo, Z., Hu, Y., & Ma, W. (2019). Interpretable Charge Prediction for Criminal Cases with Dynamic Rationale Attention. Journal of Artificial Intelligence Research, 66, 743-764. doi:10.1613/jair.1.11377Van Veen, B. L., Roland Ortt, J., & Badke-Schaub, P. G. (2019). Compensating for perceptual filters in weak signal assessments. Futures, 108, 1-11. doi:10.1016/j.futures.2019.02.018Thorleuchter, D., & Van den Poel, D. (2015). Idea mining for web-based weak signal detection. Futures, 66, 25-34. doi:10.1016/j.futures.2014.12.007Rowe, E., Wright, G., & Derbyshire, J. (2017). Enhancing horizon scanning by utilizing pre-developed scenarios: Analysis of current practice and specification of a process improvement to aid the identification of important ‘weak signals’. Technological Forecasting and Social Change, 125, 224-235. doi:10.1016/j.techfore.2017.08.001Yoon, J. (2012). Detecting weak signals for long-term business opportunities using text mining of Web news. Expert Systems with Applications, 39(16), 12543-12550. doi:10.1016/j.eswa.2012.04.059Yoo, S., & Won, D. (2018). Simulation of Weak Signals of Nanotechnology Innovation in Complex System. Sustainability, 10(2), 486. doi:10.3390/su10020486Suh, J. (2018). Generating Future-Oriented Energy Policies and Technologies from the Multidisciplinary Group Discussions by Text-Mining-Based Identification of Topics and Experts. Sustainability, 10(10), 3709. doi:10.3390/su10103709Kwon, L.-N., Park, J.-H., Moon, Y.-H., Lee, B., Shin, Y., & Kim, Y.-K. (2018). Weak signal detecting of industry convergence using information of products and services of global listed companies - focusing on growth engine industry in South Korea -. Journal of Open Innovation: Technology, Market, and Complexity, 4(1). doi:10.1186/s40852-018-0083-6Ben-Porat, O., Hirsch, S., Kuchi, L., Elad, G., Reichart, R., & Tennenholtz, M. (2020). Predicting Strategic Behavior from Free Text. Journal of Artificial Intelligence Research, 68. doi:10.1613/jair.1.11849Fink, L., Yogev, N., & Even, A. (2017). Business intelligence and organizational learning: An empirical investigation of value creation processes. Information & Management, 54(1), 38-56. doi:10.1016/j.im.2016.03.009Ilmola, L., & Kuusi, O. (2006). Filters of weak signals hinder foresight: Monitoring weak signals efficiently in corporate decision-making. Futures, 38(8), 908-924. doi:10.1016/j.futures.2005.12.019Doulamis, N. D., Doulamis, A. D., Kokkinos, P., & Varvarigos, E. M. (2016). Event Detection in Twitter Microblogging. IEEE Transactions on Cybernetics, 46(12), 2810-2824. doi:10.1109/tcyb.2015.2489841Atefeh, F., & Khreich, W. (2013). A Survey of Techniques for Event Detection in Twitter. Computational Intelligence, 31(1), 132-164. doi:10.1111/coin.12017Mehmood, N. Q., Culmone, R., & Mostarda, L. (2017). Modeling temporal aspects of sensor data for MongoDB NoSQL database. Journal of Big Data, 4(1). doi:10.1186/s40537-017-0068-5Bjeladinovic, S. (2018). A fresh approach for hybrid SQL/NoSQL database design based on data structuredness. Enterprise Information Systems, 12(8-9), 1202-1220. doi:10.1080/17517575.2018.1446102Čerešňák, R., & Kvet, M. (2019). Comparison of query performance in relational a non-relation databases. Transportation Research Procedia, 40, 170-177. doi:10.1016/j.trpro.2019.07.027Yangui, R., Nabli, A., & Gargouri, F. (2016). Automatic Transformation of Data Warehouse Schema to NoSQL Data Base: Comparative Study. Procedia Computer Science, 96, 255-264. doi:10.1016/j.procs.2016.08.138Willett, P. (2006). The Porter stemming algorithm: then and now. Program, 40(3), 219-223. doi:10.1108/00330330610681295Griol-Barres, I., Milla, S., & Millet, J. (2019). Implementación de un sistema de detección de señales débiles de futuro mediante técnicas de minería de textos. Revista española de Documentación Científica, 42(2), 234. doi:10.3989/redc.2019.2.1599Kim, J., Han, M., Lee, Y., & Park, Y. (2016). Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map. Expert Systems with Applications, 57, 311-323. doi:10.1016/j.eswa.2016.03.043Mendonça, S., Pina e Cunha, M., Kaivo-oja, J., & Ruff, F. (2004). Wild cards, weak signals and organisational improvisation. Futures, 36(2), 201-218. doi:10.1016/s0016-3287(03)00148-4Ishikiriyama, C. S., Miro, D., & Gomes, C. F. S. (2015). Text Mining Business Intelligence: A small sample of what words can say. Procedia Computer Science, 55, 261-267. doi:10.1016/j.procs.2015.07.044Yuen, J. (2018). Comparison of Impact Factor, Eigenfactor Metrics, and SCImago Journal Rank Indicator and h-index for Neurosurgical and Spinal Surgical Journals. World Neurosurgery, 119, e328-e337. doi:10.1016/j.wneu.2018.07.144Thomason, J., Padmakumar, A., Sinapov, J., Walker, N., Jiang, Y., Yedidsion, H., … Mooney, R. (2020). Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog. Journal of Artificial Intelligence Research, 67, 327-374. doi:10.1613/jair.1.11485Tseng, Y.-H., Lin, C.-J., & Lin, Y.-I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247. doi:10.1016/j.ipm.2006.11.011Gergelova, M. B., Labant, S., Kuzevic, S., Kuzevicova, Z., & Pavolova, H. (2020). Identification of Roof Surfaces from LiDAR Cloud Points by GIS Tools: A Case Study of Lučenec, Slovakia. Sustainability, 12(17), 6847. doi:10.3390/su12176847Badmos, O., Rienow, A., Callo-Concha, D., Greve, K., & Jürgens, C. (2018). Urban Development in West Africa—Monitoring and Intensity Analysis of Slum Growth in Lagos: Linking Pattern and Process. Remote Sensing, 10(7), 1044. doi:10.3390/rs10071044Thomson, E., Malhi, Y., Bartholomeus, H., Oliveras, I., Gvozdevaite, A., Peprah, T., … Doughty, C. (2018). Mapping the Leaf Economic Spectrum across West African Tropical Forests Using UAV-Acquired Hyperspectral Imagery. Remote Sensing, 10(10), 1532. doi:10.3390/rs10101532Samasse, K., Hanan, N., Tappan, G., & Diallo, Y. (2018). Assessing Cropland Area in West Africa for Agricultural Yield Analysis. Remote Sensing, 10(11), 1785. doi:10.3390/rs10111785Anchang, J. Y., Prihodko, L., Kaptué, A. T., Ross, C. W., Ji, W., Kumar, S. S., … Hanan, N. P. (2019). Trends in Woody and Herbaceous Vegetation in the Savannas of West Africa. Remote Sensing, 11(5), 576. doi:10.3390/rs11050576Jung, H. C., Getirana, A., Arsenault, K. R., Holmes, T. R. H., & McNally, A. (2019). Uncertainties in Evapotranspiration Estimates over West Africa. Remote Sensing, 11(8), 892. doi:10.3390/rs11080892Mondal, P., Liu, X., Fatoyinbo, T. E., & Lagomasino, D. (2019). Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sensing, 11(24), 2928. doi:10.3390/rs11242928Meftah, M., Damé, L., Keckhut, P., Bekki, S., Sarkissian, A., Hauchecorne, A., … Bui, A. (2019). UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sensing, 12(1), 92. doi:10.3390/rs12010092Zhang, W., Yoshida, T., & Tang, X. (2008). Text classification based on multi-word with support vector machine. Knowledge-Based Systems, 21(8), 879-886. doi:10.1016/j.knosys.2008.03.044Griol-Barres, I., Milla, S., & Millet, J. (2020). Improving strategic decision making by the detection of weak signals in heterogeneous documents by text mining techniques. AI Communications, 32(5-6), 347-360. doi:10.3233/aic-190625Dzedzickis, A., Kaklauskas, A., & Bucinskas, V. (2020). Human Emotion Recognition: Review of Sensors and Methods. Sensors, 20(3), 592. doi:10.3390/s20030592Haegeman, K., Marinelli, E., Scapolo, F., Ricci, A., & Sokolov, A. (2013). Quantitative and qualitative approaches in Future-oriented Technology Analysis (FTA): From combination to integration? Technological Forecasting and Social Change, 80(3), 386-397. doi:10.1016/j.techfore.2012.10.002Silva, V. O., Martins, C. A. P. S., & Ekel, P. Y. (2018). An Efficient Parallel Implementation of an Optimized Simplex Method in GPU-CUDA. IEEE Latin America Transactions, 16(2), 564-573. doi:10.1109/tla.2018.832741

    A new method for manufacturing dry electrodes on textiles. Validation for wearable ECG monitoring

    Full text link
    [EN] This paper presents a new dry ECG electrode printed on a textile substrate. The proposed manufacturing process permits cost-effective mass production. The ECG dry electrode is obtained through screen printing a conductive silver ink coated with a biocompatible carbon layer. Three different designs combining two shapes (circular and square) and two sizes were developed. The resulting measured impedances are similar to those obtained via a conventional electrode. The prototypes were attached to a bracelet and used with a commercial electrocardiogram (ECG) device to register ECG signals. The dry electrodes were validated via ECG monitoring and compared with a conventional wet electrode. The clinical interest intervals reported similar results and the QRS morphology presented slight differences. Noise evaluation showed no notable differences for all the analyzed parameters.The work presented was funded by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE. HYBRID II Project, IMAMCI/2021/1. This work was also supported by PID2019-109547RB-I00 (National Research Program, Ministerio de Ciencia e Innovacion, Spanish Government) & CIBERCV CB16/11/00486 (Instituto de Salud Carlos III)Ferri, J.; Llinares Llopis, R.; Segarra, I.; Cebrián Ferriols, AJ.; Garcia-Breijo, E.; Millet Roig, J. (2022). A new method for manufacturing dry electrodes on textiles. Validation for wearable ECG monitoring. Electrochemistry Communications. 136:1-8. https://doi.org/10.1016/j.elecom.2022.1072441813

    Flexible Hybrid Electrodes for Continuous Measurement of the Local Temperature in Long-Term Wounds

    Full text link
    [EN] Long-term wounds need a continuous assessment of different biophysical parameters for their treatment, and there is a lack of affordable biocompatible devices capable of obtaining that uninterrupted flow of data. A portable prototype that allows caregivers to know the local temperature behavior of a long-term wound over time and compare it with different reference zones has been developed. Alternative flexible substrates, screen-printing techniques, polymeric inks, and an embedded system have been tested to achieve potential indicators of the status and evolution of chronic wounds. The final system is formed by temperature sensors attached to a flexible and stretchable medical-grade substrate, where silver conductive tracks have been printed as interconnections with the data-acquisition unit. In addition, a specific datalogger has been developed for this system. The whole set will enable health personnel to acquire the temperature of the wound and its surroundings in order to make decisions regarding the state and evolution of the wound.This research was supported by the Spanish Government/FEDER funds (RTI2018-100910B-C43) (MINECO/FEDER). The work presented also was funded by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial). HYBRID II Project-Application No.: IMAMCI/2021/1.Rodes-Carbonell, AM.; Torregrosa-Valls, J.; Guill Ibáñez, A.; Tormos Ferrando, Á.; Juan Blanco, MA.; Cebrián Ferriols, AJ. (2021). Flexible Hybrid Electrodes for Continuous Measurement of the Local Temperature in Long-Term Wounds. Sensors. 21(8):1-24. https://doi.org/10.3390/s21082741S12421

    Mini Peltier Cell Array System for the Generation of Controlled Local Epicardial Heterogeneities

    Full text link
    [EN] The present study aims to design and fabricate a system capable of generating heterogeneities on the epicardial surface of an isolated rabbit heart perfused in a Langendorff system. The system consists of thermoelectric modules that can be independently controlled by the developed hardware, thereby allowing for the generation of temperature gradients on the epicardial surface, resulting in conduction slowing akin to heterogeneities of pathological origin. A comprehensive analysis of the system's viability was performed through modeling and thermal simulation, and its practicality was validated through preliminary tests conducted at the experimental cardiac electrophysiology laboratory of the University of Valencia. The design process involved the use of Fusion 360 for 3D designs, MATLAB/Simulink for algorithms and block diagrams, LTSpice and Altium Designer for schematic captures and PCB design, and the integration of specialized equipment for animal experimentation. The objective of the study was to efficiently capture epicardial recordings under varying conditions.Clinical relevance- The proposed system aims to induce local epicardial heterogeneities to generate labeled correct signals that can serve as a golden standard for improving algorithms that identify and characterize fibrotic substrates. This improvement will enhance the efficacy of ablation processes and potentially reduce the ablated surface area.This work was supported by PID2019-109547RB-I00 (National Research Program, Ministerio de Ciencia e Innovacion, Spanish Government) and CIBERCV CB16/11/00486 (Instituto de Salud Carlos III).Segarra, I.; Cebrián Ferriols, AJ.; Ruiperez-Campillo, S.; Tormos Ferrando, Á.; Chorro, FJ.; Castells, F.; Alberola, A.... (2023). Mini Peltier Cell Array System for the Generation of Controlled Local Epicardial Heterogeneities. IEEE. 1-4. https://doi.org/10.1109/EMBC40787.2023.103403691
    corecore