20 research outputs found

    B stars seen at high resolution by XMM-Newton

    Full text link
    We report on the properties of 11 early B stars observed with gratings on board XMM-Newton and Chandra, thereby doubling the number of B stars analysed at high resolution. The spectra typically appear soft, with temperatures of 0.2--0.6 keV, and moderately bright (log[L_{X}/L_{BOL}]~ -7) with lower values for later type stars. In line with previous studies, we also find an absence of circumstellar absorption, negligible line broadening, no line shift, and formation radii in the range 2 - 7 R*. From the X-ray brightnesses, we derived the hot mass-loss rate for each of our targets and compared these values to predictions or values derived in the optical domain: in some cases, the hot fraction of the wind can be non-negligible. The derived X-ray abundances were compared to values obtained from the optical data, with a fair agreement found between them. Finally, half of the sample presents temporal variations, either in the long-term, short-term, or both. In particular, HD44743 is found to be the second example of an X-ray pulsator, and we detect a flare-like activity in the binary HD79351, which also displays a high-energy tail and one of the brightest X-ray emissions in the sample.Comment: published in A&

    Chemical abundances of fast-rotating massive stars. I. Description of the methods and individual results

    Full text link
    Aims: Recent observations have challenged our understanding of rotational mixing in massive stars by revealing a population of fast-rotating objects with apparently normal surface nitrogen abundances. However, several questions have arisen because of a number of issues, which have rendered a reinvestigation necessary; these issues include the presence of numerous upper limits for the nitrogen abundance, unknown multiplicity status, and a mix of stars with different physical properties, such as their mass and evolutionary state, which are known to control the amount of rotational mixing. Methods: We have carefully selected a large sample of bright, fast-rotating early-type stars of our Galaxy (40 objects with spectral types between B0.5 and O4). Their high-quality, high-resolution optical spectra were then analysed with the stellar atmosphere modelling codes DETAIL/SURFACE or CMFGEN, depending on the temperature of the target. Several internal and external checks were performed to validate our methods; notably, we compared our results with literature data for some well-known objects, studied the effect of gravity darkening, or confronted the results provided by the two codes for stars amenable to both analyses. Furthermore, we studied the radial velocities of the stars to assess their binarity. Results: This first part of our study presents our methods and provides the derived stellar parameters, He, CNO abundances, and the multiplicity status of every star of the sample. It is the first time that He and CNO abundances of such a large number of Galactic massive fast rotators are determined in a homogeneous way.Comment: accepted for publication by A&

    Wind collisions in three massive stars of Cygnus OB2

    Full text link
    Aims. We wish to study the origin of the X-ray emission of three massive stars in the CygOB2 association: CygOB2#5, Cyg OB2 #8A, and Cyg OB2 #12. Methods. To this aim, dedicated X-ray observations from XMM-Newton and Swift are used, as well as archival ROSAT and Suzaku data. Results. Our results on Cyg OB2 #8A improve the phase coverage of the orbit and confirm previous studies: the signature of a wind- wind collision is conspicuous. In addition, signatures of a wind-wind collision are also detected in Cyg OB2 #5, but the X-ray emission appears to be associated with the collision between the inner binary and the tertiary component orbiting it with a 6.7 yr period, without a putative collision inside the binary. The X-ray properties strongly constrain the orbital parameters, notably allowing us to discard some proposed orbital solutions. To improve the knowledge of the orbit, we revisit the light curves and radial velocity of the inner binary, looking for reflex motion induced by the third star. Finally, the X-ray emission of Cyg OB2 #12 is also analyzed. It shows a marked decrease in recent years, compatible with either a wind-wind collision in a wide binary or the aftermath of a recent eruption.Peer reviewe

    Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database

    Get PDF
    Background: Diabetes mellitus is a common co-existing disease in the critically ill. Diabetes mellitus may reduce the risk of acute respiratory distress syndrome (ARDS), but data from previous studies are conflicting. The objective of this study was to evaluate associations between pre-existing diabetes mellitus and ARDS in critically ill patients with acute hypoxemic respiratory failure (AHRF). Methods: An ancillary analysis of a global, multi-centre prospective observational study (LUNG SAFE) was undertaken. LUNG SAFE evaluated all patients admitted to an intensive care unit (ICU) over a 4-week period, that required mechanical ventilation and met AHRF criteria. Patients who had their AHRF fully explained by cardiac failure were excluded. Important clinical characteristics were included in a stepwise selection approach (forward and backward selection combined with a significance level of 0.05) to identify a set of independent variables associated with having ARDS at any time, developing ARDS (defined as ARDS occurring after day 2 from meeting AHRF criteria) and with hospital mortality. Furthermore, propensity score analysis was undertaken to account for the differences in baseline characteristics between patients with and without diabetes mellitus, and the association between diabetes mellitus and outcomes of interest was assessed on matched samples. Results: Of the 4107 patients with AHRF included in this study, 3022 (73.6%) patients fulfilled ARDS criteria at admission or developed ARDS during their ICU stay. Diabetes mellitus was a pre-existing co-morbidity in 913 patients (22.2% of patients with AHRF). In multivariable analysis, there was no association between diabetes mellitus and having ARDS (OR 0.93 (0.78-1.11); p = 0.39), developing ARDS late (OR 0.79 (0.54-1.15); p = 0.22), or hospital mortality in patients with ARDS (1.15 (0.93-1.42); p = 0.19). In a matched sample of patients, there was no association between diabetes mellitus and outcomes of interest. Conclusions: In a large, global observational study of patients with AHRF, no association was found between diabetes mellitus and having ARDS, developing ARDS, or outcomes from ARDS. Trial registration: NCT02010073. Registered on 12 December 2013

    Abundances of fast-rotating massive stars

    Full text link
    PhD student day presentatio

    Abundance determination in massive stars: challenges for mixing processes

    Full text link
    Massive stars, the most luminous stars, are the true “cosmic engines” of our Universe. They eject large quantity of material throughout their life, which strongly influences their evolutionary path as well as their environment. An important feature of massive stars is their high rotational velocities that are either acquired at birth or due to the influence of a companion. Rotation is believed to transport nitrogen-rich and carbon/oxygen-poor material generated in the stellar core through the CNO cycle, to the surface. A way to test the e ciency of rotational mixing is to study the chemical composition at the surface of stars, in particular the fastest rotators. The incentive for this study was the discovery, in the context of the VLT- FLAMES Survey of Massive Stars, of fast rotators exhibiting an unenriched nitrogen composition at their surface, contrary to predictions from single-star evolutionary models including rotation. However, their multiplicity may a ect this conclusion, since both rotation and abundances can change as a result of binary interactions. In this work, we combined, for the first time, a detailed surface abundance analysis with a radial-velocity study to quantify the importance of binary e ects. This work was conducted for a sample of 40 bright, OB fast rotators in our Galaxy. Statistical tests and period-search techniques revealed that ≥ 40% of our targets whose multiplicity status can be probed, are binary or binary candidates. We derived the projected rotational velocity of our targets and model atmosphere codes were then used to derive stellar parameters and surface abundances of all sample stars. This abundance study revealed a correlation between the helium and nitrogen abundances of our targets, which is predicted by the rotational mixing theory. Finally, we compared our results to predictions of single-star evolutionary models. We found that 10 – 20% of our 40 targets exhibit no enhancement of the [N/O] abundance ratio, in line with results of the VLT-FLAMES Survey of Massive Stars. The properties of only half of our sample are explained by such models, and surprisingly we also uncovered a quite common large abundance of helium at the surface of our targets. Modifying the di usion coe cient in single-star models and models of non-rotating mergers did not reproduce simultaneously both the observed helium abundances and the [N/O] abundance ratios. Binary models considering a mass-transfer episode can, however, reproduce the [N/O] values of the majority of our targets and even the helium abundances of some of the most helium-enriched targets, but they cannot explain stars displaying little helium enrichment but high [N/O] values. In conclusion, we found that not every feature of massive stars can be explained by models, suggesting that they lack a physical ingredient and thus require further improvements. The second part of this thesis aimed at improving our knowledge of the X-ray emission of early B-type stars. We studied 11 such stars at high resolution thanks to two X-ray facilities, XMM-Newton and Chandra, doubling the number of B-stars analysed at high resolution. In many aspects, our study confirmed previous ones: early B-stars display rather narrow and unshifted lines arising from a warm (of typically 0.2 – 0.6 keV) plasma located at a few stellar radii over the stellar surface. We also found that abundances derived in the X-ray domain are in fair agreement with photospheric ones derived in the optical domain. Furthermore, most early B-stars are moderately bright X-ray emitters – though we also unexpectedly found that this X-ray emission varies, on short and/or long timescales, for half of our sample. A few stars display peculiar features: the presence of a very hot (1.6 – 4.4 keV) component and strong variations. These features suggest that the recorded X-ray emission may not be entirely linked to the B-stars, but could be contaminated by emission from a companion or an interaction with it. Indeed, in one case, HD 79351, a flare was detected, of a luminosity compatible with those from PMS stars, and which could be associated to its companion. Finally, the data used also led to the discovery of the second case of X-ray pulsations associated to beta Cephei activity.PhD thesi

    Chemical abundances of fast-rotating OB stars

    Full text link
    Fast rotation in massive stars is predicted to induce mixing in their interior, but a population of fast-rotating stars with normal nitrogen abundances at their surface has recently been revealed (Hunter et al. 2009; Brott et al. 2011, but see Maeder et al. 2014). However, as the binary fraction of these stars is unknown, no definitive statements about the ability of single-star evolutionary models including rotation to reproduce these observations can be made. Our work combines for the first time a detailed surface abundance analysis with a radial-velocity monitoring for a sample of bright, fast-rotating Galactic OB stars to put strong constraints on stellar evolutionary and interior models.Abundances of fast-rotating massive star

    Chemical abundances of fast-rotating OB stars

    Full text link
    Fast rotation in massive stars is predicted to induce mixing in their interior, but recent observations have challenged this concept by revealing a population of fast-rotating stars with normal nitrogen abundances at their surface (Hunter et al. 2009, A&A, 496, 841; Brott et al. 2011, A&A, 530, A116, but see Maeder et al. 2014, A&A, 565, A39). However, as the binary fraction of these stars is unknown, the importance of mass-transfer processes cannot be quantified. As a result, no definitive statements about the ability of single-star evolutionary models including rotation to reproduce these observations can be made. Our work combines for the first time a detailed surface abundance analysis with a radial-velocity monitoring for a sample of bright, fast-rotating Galactic OB stars to put strong constraints on stellar evolutionary and interior models.Abundances of fast-rotating massive star

    The X-ray bright massive stars in Cyg OB2

    Full text link
    As a complement to the results from the Cyg OB2 Chandra Legacy program, we present in this contribution the detailed analysis of the four X-ray bright massive stars dominating the cluster. Cyg OB2 #5, #8A, and #9 are binary or multiple massive stars in the Cyg OB2 association displaying several peculiarities, such as bright X-ray emission and non-thermal radio emission. Our X-ray monitoring of these stars reveals the details of their behavior at high energies, which can be directly linked to wind-wind collisions (WWCs). In addition, the X-ray emission of Cyg OB2 #12, an evolved massive star, shows a long-term decrease, which could hint at the presence of a companion (with associated colliding winds) or indicate the return to quiescence of the system following a recent eruption
    corecore