6 research outputs found

    Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis

    Get PDF
    Background: High throughput single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for exploring cellular heterogeneity among complex human cancers. scRNA-Seq studies using fresh human surgical tissue are logistically difficult, preclude histopathological triage of samples, and limit the ability to perform batch processing. This hindrance can often introduce technical biases when integrating patient datasets and increase experimental costs. Although tissue preservation methods have been previously explored to address such issues, it is yet to be examined on complex human tissues, such as solid cancers and on high throughput scRNA-Seq platforms. Methods: Using the Chromium 10X platform, we sequenced a total of ~ 120,000 cells from fresh and cryopreserved replicates across three primary breast cancers, two primary prostate cancers and a cutaneous melanoma. We performed detailed analyses between cells from each condition to assess the effects of cryopreservation on cellular heterogeneity, cell quality, clustering and the identification of gene ontologies. In addition, we performed single-cell immunophenotyping using CITE-Seq on a single breast cancer sample cryopreserved as solid tissue fragments. Results: Tumour heterogeneity identified from fresh tissues was largely conserved in cryopreserved replicates. We show that sequencing of single cells prepared from cryopreserved tissue fragments or from cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue in gene expression. We showed that cryopreservation had minimal impacts on the results of downstream analyses such as biological pathway enrichment. For some tumours, cryopreservation modestly increased cell stress signatures compared to freshly analysed tissue. Further, we demonstrate the advantage of cryopreserving whole-cells for detecting cell-surface proteins using CITE-Seq, which is impossible using other preservation methods such as single nuclei-sequencing. Conclusions: We show that the viable cryopreservation of human cancers provides high-quality single-cells for multiomics analysis. Our study guides new experimental designs for tissue biobanking for future clinical single-cell RNA sequencing studies

    Consequences of the expression of sialylated antigens in breast cancer

    No full text
    International audienceChanges in cell surface glycosylation are common modifications that occur during oncogenesis, leading to the over-expression of tumour-associated carbohydrate antigens (TACA). Most of these antigens are sialylated and the increase of sialylation is a well-known feature of transformed cells. In breast cancer, expression of TACA such as sialyl-Lewis(x) or sialyl-Tn is usually associated with a poor prognosis and a decreased overall survival of patients. However, the specific role of these sialylated antigens in breast tumour development and aggressiveness is not clearly understood. These glycosylation changes result from the modification of the expression of genes encoding specific glycosyltransferases involved in glycan biosynthesis and the level of expression of sialyltransferase genes has been proposed to be a prognostic marker for the follow-up of breast cancer patients. Several human cellular models have been developed in order to explain the mechanisms by which carbohydrate antigens can reinforce breast cancer progression and aggressiveness. TACA expression is associated with changes in cell adhesion, migration, proliferation and tumour growth. In addition, recent data on glycolipid biosynthesis indicate an important role of G(D3) synthase expression in breast cancer progression. The aim of this review is to summarize our current knowledge of sialylation changes that occur in breast cancer and to describe the cellular models developed to analyze the consequences of these changes on disease progression and aggressiveness

    G(D3) Synthase Expression Enhances Proliferation and Tumor Growth of MDA-MB-231 Breast Cancer Cells through c-Met Activation

    No full text
    International audienceThe disialoganglioside GD3 is over-expressed in about 50 % of invasive ductal breast carcinoma and the GD3 synthase gene (ST8SIA1) displayed higher expression among estrogen receptor negative breast cancer tumors, associated with a decreased overall survival of breast cancer patients. However, no relationship between ganglioside expression and breast cancer development and aggressiveness has been reported. We have previously shown that the over-expression of GD3 synthase induces the accumulation of b- and c-series gangliosides (GD3, GD2 and GT3) at the cell surface of MDA-MB-231 breast cancer cells together with the acquisition of a proliferative phenotype in absence of serum. Here we show that PI3K/Akt and MEK/ERK pathways are constitutively activated in GD3 synthase expressing cells. Analysis of tyrosine kinase receptors phosphorylation shows a specific c-Met constitutive activation in GD3 synthase expressing cells, in absence of its ligand the HGF/SF. In addition, inhibition of c-Met or downstream signaling pathways reverses the proliferative phenotype. We also show that GD3 synthase expression enhances tumor growth in severe combined immunodeficiency (SCID) mice. Finally, a higher expression of ST8SIA1 and MET in the basal subtype of human breast tumors are observed. Altogether, our results demonstrate that GD3 synthase expression is sufficient to enhance the tumorigenicity of MDA-MB-231 breast cancer cells through a ganglioside-dependent activation of c-Met receptor

    Therapeutic targets in triple negative breast cancer

    No full text
    Outcomes have improved signi ficantly for many women diagnosed with breast cancer. For the heterogeneous group of tumours lacking expression of the oestrogen, progesterone and HER2 receptors, 'triple negative' breast cancers (TNBC), the prognosis overall has remained quite poor. When TNBC recurs, there is often little response to chemotherapy, and there are a few treatment options in this setting. Thus, there is an urgent clinical need to identify new therapeutic targets in order to improve the outlook for these patients. This review highlights the most promising therapeutic targets identified through new sequencing technologies, as well as through studies of apoptosis. We also present mounting evidence that the developmental signalling pathways Wnt/β-catenin, NOTCH and Hedgehog play an important role in the pathogenesis and progression of TNBC with new therapeutic approaches inhibiting these pathways in advanced preclinical studies or early clinical trials

    Targeting the Id1-Kif11 Axis in Triple-Negative Breast Cancer Using Combination Therapy

    No full text
    The basic helix-loop-helix (bHLH) transcription factors inhibitor of differentiation 1 (Id1) and inhibitor of differentiation 3 (Id3) (referred to as Id) have an important role in maintaining the cancer stem cell (CSC) phenotype in the triple-negative breast cancer (TNBC) subtype. In this study, we aimed to understand the molecular mechanism underlying Id control of CSC phenotype and exploit it for therapeutic purposes. We used two different TNBC tumor models marked by either Id depletion or Id1 expression in order to identify Id targets using a combinatorial analysis of RNA sequencing and microarray data. Phenotypically, Id protein depletion leads to cell cycle arrest in the G0/G1 phase, which we demonstrate is reversible. In order to understand the molecular underpinning of Id proteins on the cell cycle phenotype, we carried out a large-scale small interfering RNA (siRNA) screen of 61 putative targets identified by using genomic analysis of two Id TNBC tumor models. Kinesin Family Member 11 (Kif11) and Aurora Kinase A (Aurka), which are critical cell cycle regulators, were further validated as Id targets. Interestingly, unlike in Id depletion conditions, Kif11 and Aurka knockdown leads to a G2/M arrest, suggesting a novel Id cell cycle mechanism, which we will explore in further studies. Therapeutic targeting of Kif11 to block the Id1–Kif11 axis was carried out using small molecular inhibitor ispinesib. We finally leveraged our findings to target the Id/Kif11 pathway using the small molecule inhibitor ispinesib in the Id+ CSC results combined with chemotherapy for better response in TNBC subtypes. This work opens up exciting new possibilities of targeting Id targets such as Kif11 in the TNBC subtype, which is currently refractory to chemotherapy. Targeting the Id1–Kif11 molecular pathway in the Id1+ CSCs in combination with chemotherapy and small molecular inhibitor results in more effective debulking of TNBC
    corecore