477 research outputs found

    On-line determination of stellar atmospheric parameters Teff, log g, [Fe/H] from ELODIE echelle spectra. II - The library of F5 to K7 stars

    Full text link
    A library of 211 echelle spectra taken with ELODIE at the Observatoire de Haute-Provence is presented. It provides a set of spectroscopic standards covering the full range of gravities and metallicities in the effective temperature interval [4000 K, 6300 K]. The spectra are straightened, wavelength calibrated, cleaned of cosmic ray hits, bad pixels and telluric lines. They cover the spectral range [440 nm, 680 nm] with an instrumental resolution of 42000. For each star, basic data were compiled from the Hipparcos catalogue and the Hipparcos Input Catalogue. Radial velocities with a precision better than 100 m/s are given. Atmospheric parameters (Teff, log g, [Fe/H]) from the literature are discussed. Because of scattered determinations in the bibliography, even for the most well-known stars, these parameters were adjusted by an iterative process which takes account of common or different spectral features between the standards, using our homogeneous set of spectra. Revised values of (Teff, log g, [Fe/H]) are proposed. They are still consistent with the literature, and also lead to the self-consistency of the library, in the sense that similar spectra have similar atmospheric parameters. This adjustment was performed by using step by step a method based on the least square comparison of carefully prepared spectra, which was originally developed for the on-line estimation of the atmospheric parameters of faint field stars (companion paper in the main journal). The spectra and corresponding data will only be available in electronic form at the CDS (ftp cdsarc.u-strasbg.fr or http://cdsweb.u-strasbg.fr/Abstract.html).Comment: 7 pages, 7 figures, accepted for publication in A&A Supplement Serie

    The Ages of Stars

    Full text link
    The age of an individual star cannot be measured, only estimated through mostly model-dependent or empirical methods, and no single method works well for a broad range of stellar types or for a full range in age. This review presents a summary of the available techniques for age-dating stars and ensembles of stars, their realms of applicability, and their strengths and weaknesses. My emphasis is on low-mass stars because they are present from all epochs of star formation in the Galaxy and because they present both special opportunities and problems. The ages of open clusters are important for understanding the limitations of stellar models and for calibrating empirical age indicators. For individual stars, a hierarchy of quality for the available age-dating methods is described. Although our present ability to determine the ages of even the nearest stars is mediocre, the next few years hold great promise as asteroseismology probes beyond stellar surfaces and starts to provide precise interior properties of stars and as models continue to improve when stressed by better observations.Comment: To appear in the 2010 volume of Annual Reviews of Astronomy and Astrophysics

    Nitrogen Overabundance: Globular Cluster and Halo Formation

    Full text link
    Halo globular clusters pose four succinct issues that must be solved in any scenario of their formation: single-age, single metallicity stellar populations; a lower limit ([Fe/H] ~ -2.3) to their average metallicity; comprising only 1% of the stellar halo mass, and being among the oldest stars in our Galaxy. New spectra are presented of Galactic stars and integrated spectra of Galactic globular clusters which extend to 3250 angstroms. These spectra show show that the most metal-poor and among the best-studied Galactic globular clusters show strong NH3360 absorption, even though their spectral energy distributions in the near-UV are dominated by blue horizontal branch, AF-type stars. These strong NH features must be coming from the main sequence stars in these clusters. These new data are combined with existing data on the wide range of carbon and nitrogen abundance in very metal-poor ([Fe/H] < -3.5) halo giant and dwarf stars, together with recent models of zero-metal star formation, to make a strawman scenario for globular cluster formation that can reproduce three of the above four issues, and well as related two of the three issues pertaining to nitrogen overabundance. This strawman proposal makes observational and theoretical predictions that are testable, needing specific help from the modelers to understand all of the elemental constraints on globular cluster and halo formation.Comment: to be published in ApJL, 2 figures, one tabl

    The chemical evolution of Barium and Europium in the Milky Way

    Full text link
    We compute the evolution of the abundances of barium and europium in the Milky Way and we compare our results with the observed abundances from the recent UVES Large Program "First Stars". We use a chemical evolution model which already reproduces the majority of observational constraints. We confirm that barium is a neutron capture element mainly produced in the low mass AGB stars during the thermal-pulsing phase by the 13C neutron source, in a slow neutron capture process. However, in order to reproduce the [Ba/Fe] vs. [Fe/H] as well as the Ba solar abundance, we suggest that Ba should be also produced as an r-process element by massive stars in the range 10-30 solar masses. On the other hand, europium should be only an r-process element produced in the same range of masses (10-30 solar masses), at variance with previous suggestions indicating a smaller mass range for the Eu producers. As it is well known, there is a large spread in the [Ba/Fe] and [Eu/Fe] ratios at low metallicities, although smaller in the newest data. With our model we estimate for both elements (Ba and Eu) the ranges for the r-process yields from massive stars which better reproduce the trend of the data. We find that with the same yields which are able to explain the observed trends, the large spread in the [Ba/Fe] and [Eu/Fe] ratios cannot be explained even in the context of an inhomogeneous models for the chemical evolution of our Galaxy. We therefore derive the amount by which the yields should be modified to fully account for the observed spread. We then discuss several possibilities to explain the size of the spread. We finally suggest that the production ratio of [Ba/Eu] could be almost constant in the massive stars.Comment: 14 pages, 17 figures, accepted for pubblication in A&
    • …
    corecore