41 research outputs found

    Low Tensor Rank Learning of Neural Dynamics

    Full text link
    Learning relies on coordinated synaptic changes in recurrently connected populations of neurons. Therefore, understanding the collective evolution of synaptic connectivity over learning is a key challenge in neuroscience and machine learning. In particular, recent work has shown that the weight matrices of task-trained RNNs are typically low rank, but how this low rank structure unfolds over learning is unknown. To address this, we investigate the rank of the 3-tensor formed by the weight matrices throughout learning. By fitting RNNs of varying rank to large-scale neural recordings during a motor learning task, we find that the inferred weights are low-tensor-rank and therefore evolve over a fixed low-dimensional subspace throughout the entire course of learning. We next validate the observation of low-tensor-rank learning on an RNN trained to solve the same task by performing a low-tensor-rank decomposition directly on the ground truth weights, and by showing that the method we applied to the data faithfully recovers this low rank structure. Finally, we present a set of mathematical results bounding the matrix and tensor ranks of gradient descent learning dynamics which show that low-tensor-rank weights emerge naturally in RNNs trained to solve low-dimensional tasks. Taken together, our findings provide novel constraints on the evolution of population connectivity over learning in both biological and artificial neural networks, and enable reverse engineering of learning-induced changes in recurrent network dynamics from large-scale neural recordings.Comment: The last two authors contributed equall

    Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks

    Get PDF
    Pattern separation is a fundamental function of the brain. The divergent feedforward networks thought to underlie this computation are widespread, yet exhibit remarkably similar sparse synaptic connectivity. Marr-Albus theory postulates that such networks separate overlapping activity patterns by mapping them onto larger numbers of sparsely active neurons. But spatial correlations in synaptic input and those introduced by network connectivity are likely to compromise performance. To investigate the structural and functional determinants of pattern separation we built models of the cerebellar input layer with spatially correlated input patterns, and systematically varied their synaptic connectivity. Performance was quantified by the learning speed of a classifier trained on either the input or output patterns. Our results show that sparse synaptic connectivity is essential for separating spatially correlated input patterns over a wide range of network activity, and that expansion and correlations, rather than sparse activity, are the major determinants of pattern separation

    Delving Deep into Crossmodal Integration.

    Get PDF

    Dimensionality reduction beyond neural subspaces with slice tensor component analysis

    Get PDF
    Recent work has argued that large-scale neural recordings are often well described by patterns of coactivation across neurons. Yet the view that neural variability is constrained to a fixed, low-dimensional subspace may overlook higher-dimensional structure, including stereotyped neural sequences or slowly evolving latent spaces. Here we argue that task-relevant variability in neural data can also cofluctuate over trials or time, defining distinct ‘covariability classes’ that may co-occur within the same dataset. To demix these covariability classes, we develop sliceTCA (slice tensor component analysis), a new unsupervised dimensionality reduction method for neural data tensors. In three example datasets, including motor cortical activity during a classic reaching task in primates and recent multiregion recordings in mice, we show that sliceTCA can capture more task-relevant structure in neural data using fewer components than traditional methods. Overall, our theoretical framework extends the classic view of low-dimensional population activity by incorporating additional classes of latent variables capturing higher-dimensional structure

    A Moment-Based Maximum Entropy Model for Fitting Higher-Order Interactions in Neural Data

    Get PDF
    Correlations in neural activity have been demonstrated to have profound consequences for sensory encoding. To understand how neural populations represent stimulus information, it is therefore necessary to model how pairwise and higher-order spiking correlations between neurons contribute to the collective structure of population-wide spiking patterns. Maximum entropy models are an increasingly popular method for capturing collective neural activity by including successively higher-order interaction terms. However, incorporating higher-order interactions in these models is difficult in practice due to two factors. First, the number of parameters exponentially increases as higher orders are added. Second, because triplet (and higher) spiking events occur infrequently, estimates of higher-order statistics may be contaminated by sampling noise. To address this, we extend previous work on the Reliable Interaction class of models to develop a normalized variant that adaptively identifies the specific pairwise and higher-order moments that can be estimated from a given dataset for a specified confidence level. The resulting “Reliable Moment” model is able to capture cortical-like distributions of population spiking patterns. Finally, we show that, compared with the Reliable Interaction model, the Reliable Moment model infers fewer strong spurious higher-order interactions and is better able to predict the frequencies of previously unobserved spiking patterns

    Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits

    Get PDF
    Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to evaluate and use them. To address this, we have developed Open Source Brain, a platform for sharing, viewing, analyzing, and simulating standardized models from different brain regions and species. Model structure and parameters can be automatically visualized and their dynamical properties explored through browser-based simulations. Infrastructure and tools for collaborative interaction, development, and testing are also provided. We demonstrate how existing components can be reused by constructing new models of inhibition-stabilized cortical networks that match recent experimental results. These features of Open Source Brain improve the accessibility, transparency, and reproducibility of models and facilitate their reuse by the wider community

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF
    corecore