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Abstract The collective dynamics of neural populations are often characterized in
terms of correlations in the spike activity of different neurons. We have developed an
understanding of the circuit mechanisms that lead to correlations among cell pairs,
but little is known about what determines the population firing statistics among larger
groups of cells. Here, we examine this question for a simple, but ubiquitous, circuit
feature: common fluctuating input arriving to spiking neurons of integrate-and-fire
type. We show that this leads to strong beyond-pairwise correlations—that is, cor-
relations that cannot be captured by maximum entropy models that extrapolate from
pairwise statistics—as for earlier work with discrete threshold crossing (dichotomous
Gaussian) models. Moreover, we find that the same is true for another widely used,
doubly stochastic model of neural spiking, the linear–nonlinear cascade. We demon-
strate the strong connection between the collective dynamics produced by integrate-
and-fire and dichotomous Gaussian models, and show that the latter is a surprisingly
accurate model of the former. Our conclusion is that beyond-pairwise correlations
can be both broadly expected and possible to describe by simplified (and tractable)
statistical models.
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1 Introduction

Interest in the collective dynamics of neural populations is rapidly increasing, as new
recording technologies yield views into neural activity on larger and larger scales,
and new statistical analyses yield potential consequences for the neural code [4, 5,
9, 20, 28, 34]. A fundamental question that arises as we seek to quantify these pop-
ulation dynamics is the statistical order of correlations among spiking activity in
different neurons. That is, can the co-dependence of spike events in a set of neurons
be described by an (overlapping) set of correlations among pairs of neurons, or are
there irreducible higher-order dependencies as well? Recent studies show that purely
pairwise statistical models are successful in capturing the spike outputs of neural
populations under some stimulus conditions [22, 27, 28]. At the same time, different
stimuli or different (or larger) populations can produce beyond-pairwise correlations
[9, 16, 18, 31, 33]. In these studies, and in the present paper, beyond-pairwise corre-
lations are defined by comparing with a pairwise maximum entropy (PME) model of
spike trains: that is, a statistical model built with minimal assumptions about collec-
tive spiking beyond the rates of spiking in single cells and correlations in the spikes
from cell pairs.

Despite these rich empirical findings, we are only beginning to understand what
dynamical features of neural circuits determine whether or not they will produce sub-
stantial beyond-pairwise statistical correlations. Recent work has suggested that one
of these mechanisms is common—or correlated—input fluctuations arriving simulta-
neously at multiple neurons [1, 2, 10, 14, 23]; importantly, this is a feature that oc-
curs in many neural circuits found in biology [3, 24, 32]. In particular, [1, 14] showed
that common, Gaussian input fluctuations, when “dichotomized” so that inputs over a
given threshold produce spikes, give rise to strong beyond-pairwise correlations in the
spike output of large populations of cells. This is an interesting result, as a step func-
tion thresholding mechanism produces beyond-pairwise correlations in spike outputs
starting with purely pairwise (Gaussian) inputs.

A natural question is whether more realistic, dynamical mechanisms of spike
generation—beyond “static” step function transformations—will also serve to pro-
duce strong beyond-pairwise correlations based on common input processes. In this
paper, we show that the answer is yes, and connect several widely used models of
neural spiking to explain why. In particular we show that, in contrast to the PME,
the dichotomous Gaussian model gives a highly accurate description of the complete
correlation structure of an integrate-and-fire population with common inputs.

2 Results

2.1 An Exponential Integrate-and-Fire Population with Common Inputs

Figure 1 shows a ubiquitous situation in neural circuitry: a group of cells receiving
fluctuating common input. We model this in a homogeneous population of N ex-
ponential integrate-and-fire (EIF) neurons [6, 8]. Each cell’s membrane voltage Vi ,
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Fig. 1 (a) A population of N = 3 EIF neurons receiving common ξc and independent inputs ξi . The
voltages of the neurons evolve according to Eq. (1). Parameters: τm = 5 ms, ΔT = 3 mV, VT = 20 mV,
VS = −53 mV, VR = −60 mV, τref = 3 ms. We tune the noise amplitude so that when the DC component
of the input is γ = −60 mV, the neurons fire at 10 Hz; this yields σ = 6.23 mV. The resulting firing is
strongly irregular, with the coefficient of variation of the ISI distribution being 0.91. (b) Cartoon of the
binning process: spikes recorded from each of the EIF neurons in a bin contribute towards the population
spike count. More than one spike occurring from the same neuron within a single bin is treated as a single
event. This happens less than 0.4 % of the time in our numerical simulations with μ = 0.1 and ρ = 0.1
(input parameters γ = −60 mV, σ = 6.23 mV, λ = 0.30)

i = 1, . . . ,N , evolves according to

τmV ′
i = −Vi + ψ(Vi) + Ii(t),

Ii(t) = γ +
√

σ 2τm

[√
1 − λξi(t) + √

λξc(t)
]
,

(1)

where ψ(Vi) = ΔT exp ((Vi − VS)/ΔT ). Here, τm = 5 ms is the membrane time con-
stant, ΔT = 3 mV gives the slope of the spike initiation, and VS = −53 mV is the
“soft” threshold for spike initiation. When voltages cross VS , they begin to diverge
rapidly; when they later cross a “hard” threshold VT = 20 mV, they are said to fire a
spike and are reset to the value VR = −60 mV. Voltages are then held at that voltage
for a refractory period τref = 3 ms. See the caption of Fig. 1 for further parameter
values, which drive the cell to fire with the typically observed irregular, Poisson-like
statistics [29].

Each cell’s input current Ii(t) has a constant (DC) level γ , and a white noise
term with amplitude σ . The noise term has two components. The first is the common
input ξc(t), which is shared among all neurons. The second is an independent white
noise ξi(t); the relative amplitudes are scaled so that the inputs to different cells are
correlated with (Pearson’s) correlation coefficient λ (as in, e.g., [7, 13, 26], cf. [3]).

We quantify the population output by binning spikes with temporal resolution

t = 10 ms (see Fig. 1). (On rare occasions (<0.4 % of the bins; see Fig. 1, caption)
multiple spikes from the same neuron can occur in the same bin. These are considered
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as a single spike.) The spike firing rate is quantified by μ, the probability of a spike
occurring in a bin for a given neuron. Pairwise correlation in the simultaneous spik-
ing of neurons i, j is quantified by the correlation coefficient ρ = Cov(ni, nj )/Var,
where ni , nj are the {0,1} spike events for the cells and Var is their (identical) vari-
ance μ(1 − μ).

2.2 Emergence of Strong Beyond-Pairwise Correlations in EIF Populations

Beyond these statistics of single cells and cell pairs, we describe multineuron activity
via the distribution of population spike counts—i.e., the probability PEIF(k) that k out
of the N cells fire simultaneously (as in, e.g., [1, 2, 14, 16]). Figure 2(a) illustrates
these distributions. The question we ask is: Do beyond-pairwise correlations play an
important role in determining the population-wide spike-count distribution?

To answer this, we compare the population spike-count distribution PEIF(k) from
the EIF model against that which would be predicted for a pairwise maximum entropy
(PME) model of spiking neurons. The PME model matches the spike probability μ

for each neuron and pairwise spike correlation ρ for each pair of neurons, while mak-
ing minimal further assumptions on the joint probability distribution [9, 16, 18, 31,
33], cf. [15, 30]. For a population of N neurons with identical means μ and pairwise
correlations ρ, as for our simple circuit model, the PME model gives a distribution of
population spike counts,

PPME(k) = Z−1
(

N

k

)
exp

(
αk + βk2),

where Z is a normalization factor and parameters α and β are adjusted numerically
[14]. (Specifically, we use the function fminunc to find parameters α and β which
minimize the negative likelihood of spike counts k from simulations of the EIF model,
under the model PPME(k).)

Figure 2(a) demonstrates that, for small populations, the corresponding PME and
EIF distributions are similar. However, for populations larger than about N = 30
neurons, strong differences emerge. This difference in population spike-count distri-
butions demonstrates that the EIF model produces beyond-pairwise correlations that
strongly impact the structure of population firing. This is because the moments of the
population spike-count distribution at a given order are determined by the moments—
and hence correlations—of spikes among sets of cells of up to that order. Because the
PME and EIF models have matched first- and second-order moments but different
population spike-count distributions, they must differ in their beyond-pairwise corre-
lations.

We quantify the discrepancy between PPME(k) and PEIF(k) via the (normalized)
Jenson–Shannon (JS)-divergence JS-div/ log(N),

JS-div = 1

2
D

(
PPME(k)‖M(k)

) + 1

2
D

(
PEIF(k)‖M(k)

)
, (2)

where the “averaged” distribution M(k) = 1
2PPME(k) + 1

2PEIF(k) and D(·‖·) is the
Kullback–Leibler divergence [12]. See Fig. 2(b), which shows very similar results
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Fig. 2 (a) Population spike-count distributions PEIF(k) for the EIF and PPME(k) for the pairwise max-
imum entropy (PME) model, for populations of N = 8,32,64, and 100 neurons. Here μ = 0.1 and
ρ = 0.1 (input parameters γ = −60 mV, σ = 6.23 mV, λ = 0.30). The distributions PEIF(k) and PPME(k)

are similar for smaller populations but differ larger populations. Inset: the same distributions on a log-
linear scale. (b) The Jensen–Shannon (JS) divergence between the EIF and the pairwise maximum entropy
(PME) model. We normalize by log(N), the natural growth rate of the JS divergence. Left: JS divergence
for a constant value of μ = 0.1 and increasing values of correlation ρ (input parameters γ = −60 mv,
σ = 6.23 mV, λ = 0.17, 0.30, and 0.59, respectively). Right: JS divergence for constant value of ρ = 0.1
and increasing values of firing rate μ vs. population size. The firing rate was varied by increasing the
DC component of the input current, γ (input parameters σ = 6.23 mV, γ = −60 mV, −58.2 mV, and
−56.8 mV, respectively, and λ = 0.30, 0.25, and 0.23, respectively). The JS divergence grows with in-
creasing ρ and decreasing μ

for the EIF system to those found for a thresholding model in [14] (see below).
In particular, the EIF model produces departures from the PME model for a wide
range of correlations ρ and mean firing rates μ. Additionally, as in [14] (cf. [17]), the
Jensen–Shannon divergence grows with increasing population size N . Moreover, the
divergence increases with increasing pairwise correlation and decreasing mean firing
rate.
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2.3 A Linear–Nonlinear Cascade Model That Approximates EIF Spike Activity
and Produces Beyond-Pairwise Correlations

We next study the impact of common input on beyond-pairwise correlations in a
widely used point process model of neural spiking. This is the linear–nonlinear cas-
cade model, where each neuron fires as a (doubly stochastic) inhomogeneous Poisson
process. We use a specific linear–nonlinear cascade model that is fit to EIF dynamics.
This both establishes that the common input mechanism is sufficient to drive beyond-
pairwise correlations in the cascade model, and develops a semi-analytic theory for
the population statistics in the EIF system.

In the linear–nonlinear cascade, each neuron fires as an inhomogeneous Poisson
process with rate given by convolving a temporal filter A(t) with an input signal c(t)

and then applying a time independent nonlinear function F [19]:

r(t) = F
(
A ∗ c(t)

)
.

The signal for each cell is the common input c(t) = √
σ 2τλξc(t). The filter A(t)

is computed as the linear response of the firing rate to a weak input signal, via an
expansion of the Fokker Planck equation for Eq. (1) around the equilibrium obtained
with “background” current γ + √

σ 2τ(1 − λ)ξ(t). This calculation follows exactly
the methods described in [21]. For the static nonlinearity, we follow [19] and take

F(x) = Φ

(
γ + x

Φ ′(γ )

)
,

where Φ(γ ) is the equilibrium firing rate obtained at the background currents de-
scribed above. This choice, in particular, ensures that we recover the linear approxi-
mation r(t) = A ∗ c(t) for weak input signals. For EIF neurons, the linear filter must
be approximated numerically, hence the semi-analytic nature of our model. The nu-
merical approximations for the filter, nonlinearity, and resulting firing rate are shown
in Fig. 3.

For an inhomogeneous Poisson process with rate r(t) conditioned on a common
input c(t), the probability of at least one spike occurring in the interval [t, t + 
t] is

P(spike ∈ 
t |c) = 1 − exp

(
−

∫ t+
t

t

r(s)ds

)
(3)

= 1 − exp(−S) ≡ L̃(S), (4)

where we have defined S = ∫ t+
t

t
r(s)ds.

Conditioned on the common input—or, equivalently, the windowed firing rate S—
each of the N neurons produces spikes independently. Thus, the probability of k cells
firing simultaneously is

PLNL(k) =
(

N

k

)∫ ∞

−∞
φLNL(S)

(
1 − L̃(S)

)N−k
L̃(S)k dS, (5)

where φLNL(S) is the probability density function for S , which we estimate numer-
ically via the linear filter A and static nonlinearity F described above. We note that



Journal of Mathematical Neuroscience  (2015) 5:17 Page 7 of 13

Fig. 3 (a) The linear filter A(t) and static nonlinearity F computed for inputs that yield several values of
the spike correlation coefficient ρ. The filter receives a noise amplitude of σ

√
1 − λ. The static nonlinearity

receives a noise amplitude of σ . (b) The static nonlinearity applied to the linear estimate of the firing rate,
for μ = 0.1, ρ = 0.1, plotted over a randomly chosen 1000 ms time interval. The nonlinearity increases
the firing rate magnitude and rectifies negative firing rates. This gives the predicted firing rates shown in
blue; comparing with firing rates computed by binning spikes in 10 ms windows from simulations of the
EIF model, shown in black, shows that the LNL is a fairly accurate model of the EIF dynamics

[25] derive a related expression for a different definition of synchronous output for a
neural population.

Figure 4(a) shows that the LNL cascade captures the general structure of the EIF
population output across a range of population sizes. In particular, it produces an
order-of-magnitude improvement over the PME model—see JS-divergence values in
Fig. 4(b)—and reproduces the skewed structure produced by beyond-pairwise corre-
lations.

This said, the LNL model does not produce a perfect fit to the EIF outputs, the
most obvious problem being the overestimation of the zero spike probabilities, which
in the N = 100 case are overestimated by almost 100 % (the tail probabilities are
also underestimated). Notably, the LNL fits become almost perfect for lower corre-
lations i.e. ρ = 0.05 (data not shown). This suggests the discrepancies are due to
failures of the LNL approximation for large fluctuations in the instantaneous spik-
ing rates r(t) (see Fig. 3(b)); these fluctuations are smaller at lower correlation val-
ues, which lead to smaller signal currents in the LNL formulation. While further
work would be required to trace the precise origin of this discrepancy, we conjecture
that one factor is the lack of a refractory period in the LNL model, which will im-
pact firing statistics most strongly during and after fluctuations to high instantaneous
rates.
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Fig. 4 (a) Population
spike-count distributions
PEIF(k) for the EIF model and
PLNL(k) for the
linear–nonlinear cascade
approximation for 8, 32, 64, and
100 neurons for μ = 0.1 and
ρ = 0.1. While the distributions
are very similar overall, the LNL
model greatly overestimates the
zero population spike-count
probabilities and underestimates
the tails. Inset: the same
distributions on a log-linear
scale. (b) The JS divergence
between the EIF and LNL is an
order of magnitude smaller than
PME. (Also, the order of the
mean firing rates is reversed
when compared to the PME as
the LNL cascade gives a better
approximation at lower firing
rates)

2.4 The Dichotomized Gaussian (DG) Model Gives an Excellent Description of
the EIF Population Activity

So far we have studied the emergence of beyond-pairwise correlations in two spiking
neuron models—the EIF model, described in terms of a stochastic differential equa-
tion, and the LNL model, which is a continuous-time reduction of the EIF to a doubly
stochastic point process. Next, we show how these results connect to earlier findings
for a more general and abstracted statistical model. This is the Dichotomous Gaus-
sian (DG) model, which has been shown analytically to produce beyond-pairwise
correlations and to describe empirical data from neural populations [1, 2, 14, 33].

In the DG framework, spikes either occur or fail to occur independently and dis-
cretely in each time bin. Specifically, at each time N neurons receive a correlated
Gaussian input variable with mean γ and correlation λ. Each neuron applies a step
nonlinearity (Heaviside function) to its inputs, spiking only if its input is positive.
Input parameters γ and λ are chosen to match two target firing statistics: the spike
rate μ and the correlation coefficient ρ.

In Fig. 5, we compare the population output of the DG model with that from
the EIF model. We see that, once the two models are constrained to have the same
pairwise correlation ρ and firing rate μ, the rest of their population statistics match
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Fig. 5 (a) Population
spike-count distributions
PEIF(k) for the EIF model and
PDG(k) for the Dichotomous
Gaussian (DG) approximation
for 8, 32, 64, and 100 neurons
for μ = 0.1 and ρ = 0.1. The
distributions are very similar,
showing that the DG model very
accurately captures EIF spiking
statistics. Compare with
Figs. 2, 4. Inset: the same
distributions on a log-linear
scale. (b) Left: JS divergence
between the EIF and DG models
for a constant value of μ = 0.1
and increasing values of
correlation ρ; values appear
noisy, but are several orders of
magnitude lower than the JS
divergence between EIF and
PME or LNL models in
Figs. 2(b), 4(b). Right: Similar,
for a constant value of ρ = 0.1
and increasing values of firing
rate μ. The JS divergence grows
with increasing μ

almost exactly over the full range of population sizes, for firing rates μ = 0.1 and a
variety of correlation values ρ. Panel b(ii) shows that the match degrades somewhat
for higher firing rates.

Figure 6(a) provides another view into the similar population statistics produced
by the different models. Here, we study the “heat capacity” C = Var(log2 P(k))/N ,
which is a measure of how variable the probabilities of different population spike
counts k are. In prior work [14] it was shown that this statistic grows linearly (i.e.,
extensively) with population size N for the DG model, and the figure shows that
the same holds for the EIF and LIF models. This growth stands, as first noted by
[14], in marked contrast to the heat capacity for the PME model, which saturates at a
population of approximately N = 30 neurons.

We next develop the mathematical connection between the DG and the EIF mod-
els, via our description of the LNL model above.

First, we note that, for the DG model, the correlated Gaussian input that each
neuron receives can be written, for the ith neuron, Zi = γ + √

1 − λTi + √
λc. Here,

Ti is a Gaussian random variable (with unit variance) which is independent for each
neuron (the independent input), c is a Gaussian random variable that is common input
to all neurons (the common input), and γ is a constant term giving the mean input.
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Fig. 6 (a) The heat capacity increases linearly for the LNL cascade, the EIF and the DG models. The heat
capacity of the LNL cascade increases at a slightly greater rate than that of the EIF and DG models, which
overlap. The heat capacity for the PME model saturates at a population of approximately N = 30 neurons.
(b) Comparing the L(c) vs. the L̃(f (c)) functions for the DG and LNL models, respectively (here input
correlations λ = 0.17 for DG model). The two functions largely agree over about 2 standard deviations of
the Gaussian pdf φDG(c) (shaded)

The probability of a spike is given by a step function applied to the input. For a given
realization of the common input c, this is P(Zi > 0|c). We can again define a “L”
function similar to that in Eq. (4):

L(c) = P

(
Ti >

−√
λc − γ√
1 − λ

)
= CDF

(√
λc + γ√
1 − λ

)
. (6)

Here, the CDF is the cumulative distribution function for a Gaussian variable with
unit variance (and the equality follows from the symmetry of this distribution).
Equipped with Eq. (6), the probability of observing a spike count k is similar to
Eq. (5):

PDG(k) =
(

N

k

)∫ ∞

−∞
φDG(c)

(
1 − L(c)

)N−k
L(c)k dc, (7)

where φDG(c) is the pdf of a one-dimensional Gaussian with mean 0 and variance λ.
We next compare the population spike-count distributions PLNL(k) and PDG(k).

To make the comparison we must transform from the probability density function of
the linear–nonlinear model φLNL to the Gaussian pdf φDG using the nonlinear change
of variable:

S = f (c), where f ′(c) = φDG(c)

φLNL(f (c))
. (8)

Writing the LNL-cascade probability in terms of the c variable we obtain

PLNL(k) =
(

N

k

)∫ ∞

−∞
φDG(c)

(
1 − L̃

(
f (c)

))N−k
L̃

(
f (c)

)k dc. (9)

Thus, after the transformation the only difference between the LNL and DG mod-
els is the functions L(c) vs. L̃(f (c)). Figure 6(b) shows that these functions largely
agree over about 2 standard deviations of the Gaussian pdf of values of the common
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input signal c.1 This reveals why the LNL and DG—and, by extension, the EIF—
models all produce such similar population-level outputs, including their higher-order
structure.

3 Conclusion

We have shown that Exponential-Integrate-and-Fire (EIF) neurons receiving com-
mon input give rise to strong beyond-pairwise correlations—that is, distributions of
population spike counts that cannot be described by a pairwise maximum entropy
(PME) approach. Moreover, the population output that results can be predicted from
a linear–nonlinear (LNL) cascade model, which forms a tractable reduction of the
EIF neuron. Beyond giving an explicit formula for the EIF population spike-count
distribution, our findings for the LNL-cascade model demonstrate that common in-
put will drive beyond-pairwise correlations in a widely used class of point process
models.

Finally, we show that there is a surprisingly exact connection between the pop-
ulation dynamics of the EIF- and LNL-cascade models and that of the (apparently)
simpler Dichotomized Gaussian (DG) model of [1, 14]. The success of the DG model
in capturing EIF population statistics is significant for two reasons. First, it suggests
one reason why this abstracted model has been able to capture the population output
recorded from spiking neurons [33]. Second, because the DG model is a special case
of a Bernoulli generalized linear model (see the appendix), our finding indicates that
this very broad class of statistical models may be able to capture the higher-order
population activity in neural data. A key feature of these models would be the inclu-
sion of common fluctuations in the spike probabilities of cells in each time bin (cf.
[11]); such models can also be extended to include spike history-dependent terms.
This would then capture an effect missing here: temporal correlations in spike trains
(e.g., refractory effects).
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Page 12 of 13 D.A. Leen, E. Shea-Brown

Appendix: Generalized Linear models

The LNL model provides a reduction of the EIF model to an inhomogeneous Pois-
son process that is based directly on the underlying SDEs, and is in extremely wide
use in neural modeling [6]. However, it is far from the only approach to statistical
modeling of spiking neurons. In particular, generalized linear models can be fit to
the Bernoulli data given by the 1’s and 0’s of binned spikes in individual cells. Such
models similarly apply a linear filter to the common input signal, and followed by a
static nonlinearity f (·), to yield a spiking probability for the current time bin. Noting
that any linear filter on our (Gaussian white noise) input signal will yield a Gaussian
value s, this class of models therefore yields spiking probabilities f (s) where s is
Gaussian. Comparing with Eq. (6) in the main text, we see that the DG and general-
ized linear models have the same general form, when f is taken to be the cumulative
distribution function for a Gaussian (as in “probit” models).
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