1,093 research outputs found

    Lagrangian approach to a symplectic formalism for singular systems

    Get PDF
    We develop a Lagrangian approach for constructing a symplectic structure for singular systems. It gives a simple and unified framework for understanding the origin of the pathologies that appear in the Dirac-Bergmann formalism, and offers a more general approach for a symplectic formalism, even when there is no Hamiltonian in a canonical sense. We can thus overcome the usual limitations of the canonical quantization, and perform an algebraically consistent quantization for a more general set of Lagrangian systems.Comment: 30 page

    Correlated variability of Mkn 421 at X-ray and TeV wavelengths on timescales of hours

    Get PDF
    Mkn 421 was observed for about two days with BeppoSAX, prior to and partly overlapping the start of a 1 week continuous exposure with ASCA in April 1998, as part of a world-wide multiwavelength campaign. A pronounced, well defined, flare observed in X-rays was also observed simultaneously at TeV energies by the Whipple Observatory's 10 m gamma-ray telescope. These data provide the first evidence that the X-ray and TeV intensities are well correlated on time-scales of hours.Comment: 4 pages, 1 figure, presented at the VERITAS Workshop on the TeV Astrophysics of Extragalactic Object

    On the Foundation of the Relativistic Dynamics with the Tachyon

    Full text link
    The theoretical foundation of the object moving faster than light in vacuum ({\it tachyon}) is still missing or incomplete. Here we present the classical foundation of the relativistic dynamics including the tachyon. An anomalous sign-factor extracted from the transformation of 1−u2/c2{ \sqrt{1-u^{2}/c^{2} } } under the Lorentz transformation, which has been always missed in the usual formulation of the tachyon, has a crucial role in the dynamics of the tachyon. Due to this factor the mass of the tachyon transforms in the unusual way although the energy and momentum, which are defined as the conserved quantities in all uniformly moving systems, transform in the usual way as in the case of the object moving slower than light ({\it bradyon}). We show that this result can be also obtained from the least action approach. On the other hand, we show that the ambiguities for the description of the dynamics for the object moving with the velocity of light ({\it luxon}) can be consistently removed only by introducing a new dynamical variable. Furthermore, by using the fundamental definition of the momentum and energy we show that the zero-point energy for any kind of the objects, {\it i.e.}, the tachyon, bradyon, and luxon, which has been known as the undetermined constant, should satisfy some constraints for consistency, and we note that this is essentially another novel relativistic effect. Finally, we remark about the several unsolved problems.Comment: 39 pages, latex, 15 figures avaliable upon reques

    The demand for sports and exercise: Results from an illustrative survey

    Get PDF
    Funding from the Department of Health policy research programme was used in this study.There is a paucity of empirical evidence on the extent to which price and perceived benefits affect the level of participation in sports and exercise. Using an illustrative sample of 60 adults at Brunel University, West London, we investigate the determinants of demand for sports and exercise. The data were collected through face-to-face interviews that covered indicators of sports and exercise behaviour; money/time price and perceived benefits of participation; and socio- economic/demographic details. Count, linear and probit regression models were fitted as appropriate. Seventy eight per cent of the sample participated in sports and exercise and spent an average of £27 per month and an average of 20 min travelling per occasion of sports and exercise. The demand for sport and exercise was negatively associated with time (travel or access time) and ‘variable’ price and positively correlated with ‘fixed’ price. Demand was price inelastic, except in the case of meeting the UK government’s recommended level of participation, which is time price elastic (elasticity = −2.2). The implications of data from a larger nationally representative sample as well as the role of economic incentives in influencing uptake of sports and exercise are discussed.This article is available through the Brunel Open Access Publishing Fund

    The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy

    Get PDF
    The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a very-high-definition camera (546 fast phototubes with 0.12 degrees spacing surrounded by 54 larger tubes in two guard rings) started operation in Autumn 1996 on the site of the former solar plant Themis (France). Using the atmospheric Cherenkov technique, it detects and identifies very high energy gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin

    AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community.</p> <p>Results</p> <p>This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment.</p> <p>Conclusions</p> <p>AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements.</p

    Multiwavelength Observations of Markarian 421 During a TeV/X-Ray Flare

    Get PDF
    A TeV flare from the BL Lac object Mrk 421 was detected in May of 1994 by the Whipple Observatory air Cherenkov experiment during which the flux above 250 GeV increased by nearly an order of magnitude over a 2-day period. Contemporaneous observations by ASCA showed the X-ray flux to be in a very high state. We present these results, combined with the first ever simultaneous or nearly simultaneous observations at GeV gamma-ray, UV, IR, mm, and radio energies for this nearest BL Lac object. While the GeV gamma-ray flux increased slightly, there is little evidence for variability comparable to that seen at TeV and X-ray energies. Other wavelengths show even less variability. This provides important constraints on the emission mechanisms at work. We present the multiwavelength spectrum of this gamma-ray blazar for both quiescent and flaring states and discuss the data in terms of current models of blazar emission

    Deep gray matter volume loss drives disability worsening in multiple sclerosis

    Get PDF
    Objective: Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. Methods: We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression. Results: SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (–1.45%), PPMS (–1.66%), and RRMS (–1.34%) than CIS (–0.88%) and HCs (–0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (–1.21%) was significantly faster than RRMS (–0.76%), CIS (–0.75%), and HCs (–0.51%). Similarly, the rate of parietal GM atrophy in SPMS (–1.24-%) was faster than CIS (–0.63%) and HCs (–0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). Interpretation: This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of therapeutic interventions. Ann Neurol 2018;83:210–222

    Holder exponents of irregular signals and local fractional derivatives

    Full text link
    It has been recognized recently that fractional calculus is useful for handling scaling structures and processes. We begin this survey by pointing out the relevance of the subject to physical situations. Then the essential definitions and formulae from fractional calculus are summarized and their immediate use in the study of scaling in physical systems is given. This is followed by a brief summary of classical results. The main theme of the review rests on the notion of local fractional derivatives. There is a direct connection between local fractional differentiability properties and the dimensions/ local Holder exponents of nowhere differentiable functions. It is argued that local fractional derivatives provide a powerful tool to analyse the pointwise behaviour of irregular signals and functions.Comment: 20 pages, Late
    • 

    corecore