2 research outputs found

    Reproducibility of the heat/capsaicin skin sensitization model in healthy volunteers

    Get PDF
    INTRODUCTION: Heat/capsaicin skin sensitization is a well-characterized human experimental model to induce hyperalgesia and allodynia. Using this model, gabapentin, among other drugs, was shown to significantly reduce cutaneous hyperalgesia compared to placebo. Since the larger thermal probes used in the original studies to produce heat sensitization are now commercially unavailable, we decided to assess whether previous findings could be replicated with a currently available smaller probe (heated area 9 cm(2) versus 12.5–15.7 cm(2)). STUDY DESIGN AND METHODS: After Institutional Review Board approval, 15 adult healthy volunteers participated in two study sessions, scheduled 1 week apart (Part A). In both sessions, subjects were exposed to the heat/capsaicin cutaneous sensitization model. Areas of hypersensitivity to brush stroke and von Frey (VF) filament stimulation were measured at baseline and after rekindling of skin sensitization. Another group of 15 volunteers was exposed to an identical schedule and set of sensitization procedures, but, in each session, received either gabapentin or placebo (Part B). RESULTS: Unlike previous reports, a similar reduction of areas of hyperalgesia was observed in all groups/sessions. Fading of areas of hyperalgesia over time was observed in Part A. In Part B, there was no difference in area reduction after gabapentin compared to placebo. CONCLUSION: When using smaller thermal probes than originally proposed, modifications of other parameters of sensitization and/or rekindling process may be needed to allow the heat/capsaicin sensitization protocol to be used as initially intended. Standardization and validation of experimental pain models is critical to the advancement of translational pain research

    Homologous recombination DNA repair defects in PALB2-associated breast cancers

    No full text
    Abstract Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD
    corecore