1,693 research outputs found

    Improved Torsion Pendulum for Ground Testing of LISA Displacement Sensors

    Full text link
    We discuss a new torsion pendulum design for ground testing of prototype LISA (Laser Interferometer Space Antenna) displacement sensors. This new design is directly sensitive to net forces and therefore provides a more representative test of the noisy forces and parasitic stiffnesses acting on the test mass as compared to previous ground-based experiments. We also discuss a specific application to the measurement of thermal gradient effects.Comment: 4 pages 1 figure, to appear in the Proceedings of the 10th Marcel Grossmann Meeting on General Relativit

    Dynamical decoherence of the light induced interlayer coupling in YBa2_{2}Cu3_{3}O6+δ_{6+\delta}

    Full text link
    Optical excitation of apical oxygen vibrations in YBa2_{2}Cu3_{3}O6+δ_{6+\delta} has been shown to enhance its c-axis superconducting-phase rigidity, as evidenced by a transient blue shift of the equilibrium inter-bilayer Josephson plasma resonance. Surprisingly, a transient c-axis plasma mode could also be induced above Tc_{c} by the same apical oxygen excitation, suggesting light activated superfluid tunneling throughout the pseudogap phase of YBa2_{2}Cu3_{3}O6+δ_{6+\delta}. However, despite the similarities between the above Tc_{c} transient plasma mode and the equilibrium Josephson plasmon, alternative explanations involving high mobility quasiparticle transport should be considered. Here, we report an extensive study of the relaxation of the light-induced plasmon into the equilibrium incoherent phase. These new experiments allow for a critical assessment of the nature of this mode. We determine that the transient plasma relaxes through a collapse of its coherence length rather than its carrier (or superfluid) density. These observations are not easily reconciled with quasiparticle interlayer transport, and rather support transient superfluid tunneling as the origin of the light-induced interlayer coupling in YBa2_{2}Cu3_{3}O6+δ_{6+\delta}.Comment: 27 pages (17 pages main text, 10 pages supplementary), 5 figures (main text

    Tracking primary thermalization events in graphene with photoemission at extreme timescales

    Full text link
    Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is instead predicted to be dominant at the earliest time delays. Here, <8<8 femtosecond extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time- and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme timescales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for PetaHertz electronics.Comment: 16 pages, 8 figure

    Population Inversion in Monolayer and Bilayer Graphene

    Get PDF
    The recent demonstration of saturable absorption and negative optical conductivity in the Terahertz range in graphene has opened up new opportunities for optoelectronic applications based on this and other low dimensional materials. Recently, population inversion across the Dirac point has been observed directly by time- and angle-resolved photoemission spectroscopy (tr-ARPES), revealing a relaxation time of only ~ 130 femtoseconds. This severely limits the applicability of single layer graphene to, for example, Terahertz light amplification. Here we use tr-ARPES to demonstrate long-lived population inversion in bilayer graphene. The effect is attributed to the small band gap found in this compound. We propose a microscopic model for these observations and speculate that an enhancement of both the pump photon energy and the pump fluence may further increase this lifetime.Comment: 18 pages, 6 figure

    Generalized observers and velocity measurements in General Relativity

    Get PDF
    To resolve some unphysical interpretations related to velocity measurements by static observers, we discuss the use of generalized observer sets, give a prescription for defining the speed of test particles relative to those observers and show that, for any locally inertial frame, the speed of a freely falling material particle is always less than the speed of light at the Schwarzschild black hole surface.Comment: 20 pages, 1 figure, submitted to General Relativity and Gravitatio

    Ultrafast Momentum Imaging of Pseudospin-Flip Excitations in Graphene

    Get PDF
    The pseudospin of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photo-excited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization, and are maximum perpendicular to it. Here, we use time- and angle-resolved photoemission spectroscopy to investigate the resulting unconventional hot carrier dynamics, sampling carrier distributions as a function of energy and in-plane momentum. We first show that the rapidly-established quasi-thermal electron distribution initially exhibits an azimuth-dependent temperature, consistent with relaxation through collinear electron-electron scattering. Azimuthal thermalization is found to occur only at longer time delays, at a rate that depends on the substrate and the static doping level. Further, we observe pronounced differences in the electron and hole dynamics in n-doped samples. By simulating the Coulomb- and phonon-mediated carrier dynamics we are able to disentangle the influence of excitation fluence, screening, and doping, and develop a microscopic picture of the carrier dynamics in photo-excited graphene. Our results clarify new aspects of hot carrier dynamics that are unique to Dirac materials, with relevance for photo-control experiments and optoelectronic device applications.Comment: 23 pages, 12 figure

    Achieving geodetic motion for LISA test masses: ground testing result

    Full text link
    The low-frequency resolution of space-based gravitational wave observatories such as LISA (Laser Interferometry Space Antenna) hinges on the orbital purity of a free-falling reference test mass inside a satellite shield. We present here a torsion pendulum study of the forces that will disturb an orbiting test mass inside a LISA capacitive position sensor. The pendulum, with a measured torque noise floor below 10 fNm/sqrt{Hz} from 0.6 to 10 mHz, has allowed placement of an upper limit on sensor force noise contributions, measurement of the sensor electrostatic stiffness at the 5% level, and detection and compensation of stray DC electrostatic biases at the mV level.Comment: 4 pages (revtex4) with 4 figure

    Enhanced electron-phonon coupling in graphene with periodically distorted lattice

    Get PDF
    Electron-phonon coupling directly determines the stability of cooperative order in solids, including superconductivity, charge and spin density waves. Therefore, the ability to enhance or reduce electron-phonon coupling by optical driving may open up new possibilities to steer materials' functionalities, potentially at high speeds. Here we explore the response of bilayer graphene to dynamical modulation of the lattice, achieved by driving optically-active in-plane bond stretching vibrations with femtosecond mid-infrared pulses. The driven state is studied by two different ultrafast spectroscopic techniques. Firstly, TeraHertz time-domain spectroscopy reveals that the Drude scattering rate decreases upon driving. Secondly, the relaxation rate of hot quasi-particles, as measured by time- and angle-resolved photoemission spectroscopy, increases. These two independent observations are quantitatively consistent with one another and can be explained by a transient three-fold enhancement of the electron-phonon coupling constant. The findings reported here provide useful perspective for related experiments, which reported the enhancement of superconductivity in alkali-doped fullerites when a similar phonon mode was driven.Comment: 12 pages, 4 figure

    Softening of the insulating phase near Tc for the photo-induced insulator-to-metal phase transition in vanadium dioxide

    Full text link
    We use optical-pump terahertz-probe spectroscopy to investigate the near-threshold behavior of the photoinduced insulator-to-metal (IM) transition in vanadium dioxide thin films. Upon approaching Tc a reduction in the fluence required to drive the IM transition is observed, consistent with a softening of the insulating state due to an increasing metallic volume fraction (below the percolation limit). This phase coexistence facilitates the growth of a homogeneous metallic conducting phase following superheating via photoexcitation. A simple dynamic model using Bruggeman effective medium theory describes the observed initial condition sensitivity.Comment: accepted for publication in Physical Review Letter

    Kinematics and hydrodynamics of spinning particles

    Full text link
    In the first part (Sections 1 and 2) of this paper --starting from the Pauli current, in the ordinary tensorial language-- we obtain the decomposition of the non-relativistic field velocity into two orthogonal parts: (i) the "classical part, that is, the 3-velocity w = p/m OF the center-of-mass (CM), and (ii) the so-called "quantum" part, that is, the 3-velocity V of the motion IN the CM frame (namely, the internal "spin motion" or zitterbewegung). By inserting such a complete, composite expression of the velocity into the kinetic energy term of the non-relativistic classical (i.e., newtonian) lagrangian, we straightforwardly get the appearance of the so-called "quantum potential" associated, as it is known, with the Madelung fluid. This result carries further evidence that the quantum behaviour of micro-systems can be adirect consequence of the fundamental existence of spin. In the second part (Sections 3 and 4), we fix our attention on the total 3-velocity v = w + V, it being now necessary to pass to relativistic (classical) physics; and we show that the proper time entering the definition of the four-velocity v^mu for spinning particles has to be the proper time tau of the CM frame. Inserting the correct Lorentz factor into the definition of v^mu leads to completely new kinematical properties for v_mu v^mu. The important constraint p_mu v^mu = m, identically true for scalar particles, but just assumed a priori in all previous spinning particle theories, is herein derived in a self-consistent way.Comment: LaTeX file; needs kapproc.st
    • …
    corecore