4,528 research outputs found
Conjugate Gradient-based Soft-Output Detection and Precoding in Massive MIMO Systems
Massive multiple-input multiple-output (MIMO) promises improved spectral
efficiency, coverage, and range, compared to conventional (small-scale) MIMO
wireless systems. Unfortunately, these benefits come at the cost of
significantly increased computational complexity, especially for systems with
realistic antenna configurations. To reduce the complexity of data detection
(in the uplink) and precoding (in the downlink) in massive MIMO systems, we
propose to use conjugate gradient (CG) methods. While precoding using CG is
rather straightforward, soft-output minimum mean-square error (MMSE) detection
requires the computation of the post-equalization
signal-to-interference-and-noise-ratio (SINR). To enable CG for soft-output
detection, we propose a novel way of computing the SINR directly within the CG
algorithm at low complexity. We investigate the performance/complexity
trade-offs associated with CG-based soft-output detection and precoding, and we
compare it to exact and approximate methods. Our results reveal that the
proposed method outperforms existing algorithms for massive MIMO systems with
realistic antenna configurations.Comment: to appear at IEEE GLOBECOM 201
A Flexible LDPC/Turbo Decoder Architecture
Low-density parity-check (LDPC) codes and convolutional Turbo codes are two of the most powerful error correcting codes that are widely used in modern
communication systems. In a multi-mode baseband receiver, both LDPC and Turbo decoders may be required. However, the different decoding approaches
for LDPC and Turbo codes usually lead to different hardware architectures. In this paper we propose a unified message passing algorithm for LDPC and Turbo
codes and introduce a flexible soft-input soft-output (SISO) module to handle LDPC/Turbo decoding. We employ the trellis-based maximum a posteriori (MAP)
algorithm as a bridge between LDPC and Turbo codes decoding. We view the LDPC code as a concatenation of n super-codes where each super-code has a simpler
trellis structure so that the MAP algorithm can be easily applied to it. We propose a flexible functional unit (FFU) for MAP processing of LDPC and Turbo
codes with a low hardware overhead (about 15% area and timing overhead). Based on the FFU, we propose an area-efficient flexible SISO decoder architecture to
support LDPC/Turbo codes decoding. Multiple such SISO modules can be embedded into a parallel decoder for higher decoding throughput. As a case study, a
flexible LDPC/Turbo decoder has been synthesized on a TSMC 90 nm CMOS technology with a core area of 3.2 mm2. The decoder can support IEEE 802.16e LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Turbo codes. Running at 500 MHz clock frequency, the decoder can sustain up to 600 Mbps LDPC decoding or
450 Mbps Turbo decoding.NokiaNokia Siemens Networks (NSN)XilinxTexas InstrumentsNational Science Foundatio
A New MIMO Detector Architecture Based on A Forward-Backward Trellis Algorithm
In this paper, a recursive Forward-Backward (F-B) trellis algorithm is proposed for soft-output MIMO detection. Instead of using the traditional tree topology, we represent the search space of the MIMO signals with a fully connected trellis
and a Forward-Backward recursion is applied to compute the a posteriori probability (APP) for each coded data bit. The proposed detector has the following advantages: a) it keeps a fixed throughput and has a regular datapath structure which makes it amenable to VLSI implementation, and b) it attempts
to maximize the a posteriori probability by tracing both forward and backward on the trellis and it always ensures that at least one candidate exists for every possible transmitted bit xk ∈ {− 1, +1}. Compared with the soft K-best detector, the proposed detector significantly reduces the complexity because
sorting is not required, while still maintaining good performance. A maximum throughput of 533Mbps is achievable at a cost of 576K gates for 4 x 4 16-QAM system.NokiaNational Science Foundatio
On the Achievable Rates of Decentralized Equalization in Massive MU-MIMO Systems
Massive multi-user (MU) multiple-input multiple-output (MIMO) promises
significant gains in spectral efficiency compared to traditional, small-scale
MIMO technology. Linear equalization algorithms, such as zero forcing (ZF) or
minimum mean-square error (MMSE)-based methods, typically rely on centralized
processing at the base station (BS), which results in (i) excessively high
interconnect and chip input/output data rates, and (ii) high computational
complexity. In this paper, we investigate the achievable rates of decentralized
equalization that mitigates both of these issues. We consider two distinct BS
architectures that partition the antenna array into clusters, each associated
with independent radio-frequency chains and signal processing hardware, and the
results of each cluster are fused in a feedforward network. For both
architectures, we consider ZF, MMSE, and a novel, non-linear equalization
algorithm that builds upon approximate message passing (AMP), and we
theoretically analyze the achievable rates of these methods. Our results
demonstrate that decentralized equalization with our AMP-based methods incurs
no or only a negligible loss in terms of achievable rates compared to that of
centralized solutions.Comment: Will be presented at the 2017 IEEE International Symposium on
Information Theor
LOW-COMPLEXITY AND HIGH-PERFORMANCE SOFT MIMO DETECTION BASED ON DISTRIBUTED M-ALGORITHM THROUGH TRELLIS-DIAGRAM
This paper presents a novel low-complexity multiple-input multipleoutput (MIMO) detection scheme using a distributed M-algorithm (DM) to achieve high performance soft MIMO detection. To reduce the searching complexity, we build a MIMO trellis graph and split the searching operations among different nodes, where each node will apply the M-algorithm. Instead of keeping a global candidate list as the traditional detector does, this algorithm keeps multiple small candidate lists to generate soft information. Since the DM algorithm can achieve good BER performance with a small M, the sorting cost of the DM algorithm is lower than that of the conventional K-best MIMO algorithm. The proposed algorithm is very suitable for high speed parallel processing.NokiaNokia Siemens Networks (NSN)XilinxNational Science Foundatio
Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations
Large-scale (or massive) multiple-input multiple-output (MIMO) is expected to
be one of the key technologies in next-generation multi-user cellular systems,
based on the upcoming 3GPP LTE Release 12 standard, for example. In this work,
we propose - to the best of our knowledge - the first VLSI design enabling
high-throughput data detection in single-carrier frequency-division multiple
access (SC-FDMA)-based large-scale MIMO systems. We propose a new approximate
matrix inversion algorithm relying on a Neumann series expansion, which
substantially reduces the complexity of linear data detection. We analyze the
associated error, and we compare its performance and complexity to those of an
exact linear detector. We present corresponding VLSI architectures, which
perform exact and approximate soft-output detection for large-scale MIMO
systems with various antenna/user configurations. Reference implementation
results for a Xilinx Virtex-7 XC7VX980T FPGA show that our designs are able to
achieve more than 600 Mb/s for a 128 antenna, 8 user 3GPP LTE-based large-scale
MIMO system. We finally provide a performance/complexity trade-off comparison
using the presented FPGA designs, which reveals that the detector circuit of
choice is determined by the ratio between BS antennas and users, as well as the
desired error-rate performance.Comment: To appear in the IEEE Journal of Selected Topics in Signal Processin
Scalable Architecture of MIMO Multi-carrier CDMA System on Programmable Logic
In this paper, a scalable architecture of the multicarrier CDMA system using Multiple-Input-Multiple-Output (MIMO) technology is designed in the programmable logic array. The system-level partitioning with different architecture
design entries is described. The overall computing architecture for complex signal processing blocks, e.g., channel estimation, frequency domain equalization, demodulation etc is described. The MIMO architecture is easily extended from a SISO system with single antenna. This scalable architecture demonstrates resource utilization efficiency and easy extension to MIMO
configurations
UNIFIED DECODER ARCHITECTURE FOR LDPC/TURBO CODES
Low-density parity-check (LDPC) codes on par with convolutional turbo codes (CTC) are two of the most powerful error correction codes known to perform very close to the Shannon limit. However, their different code structures usually
lead to different hardware implementations. In this paper, we propose a unified decoder architecture that is capable of decoding both LDPC and turbo codes with a limited hardware overhead. We employ maximum a posteriori (MAP) algorithm
as a bridge between LDPC and turbo codes. We represent LDPC codes as parallel concatenated single parity check (PCSPC) codes and propose a group sub-trellis (GST) decoding algorithm for the efficient decoding of PCSPC codes. This algorithm achieves about 2X improvement in the convergence speed and is more numerically robust than the classical ”tanh” algorithm. What is more interesting is that we can generalize a unified trellis decoding algorithm for LDPC and turbo codes based on their trellis structures. We propose a
reconfigurable computation kernel for log-MAP decoding of LDPC and turbo codes at a cost of ∼15% hardware overhead.
Small lookup tables (LUTs) with 9 entries of 2-bit data are
designed to implement the log-MAP algorithm. Fixed point
(6:2) simulation results show that there is negligible or nearly
no performance loss by using this LUT approximation compared
to the ideal case. The proposed architecture results in
scalable and flexible datapath units enabling parallel decoding
of LDPC/turbo codes.NokiaNational Science Foundatio
- …
