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ABSTRACT

This paper presents a novel low-complexity multiple-input multiple-
output (MIMO) detection scheme using a distributed M-algorithm
(DM) to achieve high performance soft MIMO detection. To reduce
the searching complexity, we build a MIMO trellis graph and split
the searching operations among different nodes, where each node
will apply the M -algorithm. Instead of keeping a global candidate
list as the traditional detector does, this algorithm keeps multiple
small candidate lists to generate soft information. Since the DM al-
gorithm can achieve good BER performance with a small M , the
sorting cost of the DM algorithm is lower than that of the conven-
tional K-best MIMO algorithm. The proposed algorithm is very
suitable for high speed parallel processing.

Index Terms— MIMO, M -Algorithm, Soft Detection

1. INTRODUCTION

The main challenge of soft MIMO detection is to efficiently and
accurately generate the log-likelihood radios (LLRs) for the outer
channel decoder. The optimal soft MAP detection will consume
enormous computing power and require tremendous computation
resources which makes it impossible to be employed in MIMO
systems with higher-order modulation schemes. To reduce the ex-
ponentially algorithmic complexity, some close-to-optimal soft de-
tection algorithms have been proposed by researchers [1, 2, 3, 4, 5].
These algorithms can be categorized as either depth-first or breadth-
first tree-search algorithms. The depth-first detector has non-
deterministic complexity and variable throughput which makes it
sensitive to the channel conditions. The breadth-first K-best detec-
tor has a high sorting complexity especially when K is large.

In this paper, we propose a new soft MIMO detection method us-
ing the M-algorithm [6]. In [7], we introduced a greedy algorithm to
achieve high throughput MIMO detection. In this paper, we extend
this greedy algorithm and propose a distributed M -algorithm (DM)
for soft-output MIMO detection, where no feedback from the outer
channel decoder is available. We transform the traditional MIMO
detection problem into a shortest path search problem in a MIMO
trellis diagram where each trellis node is physically mapped to one
transmit symbol in the alphabet. Strictly speaking, although trellis
is memoryless, we broadly use it to efficiently represent the search
space of the MIMO signal. The trellis-search based DM algorithm
has two steps. In the first step, it prunes unlikely trellis paths by
only keeping the best M paths, the ones with the least M cumu-
lative weights, among QM candidates at each trellis node. In the
second step, the pruned trellis will be augmented to generate candi-
date lists for LLR calculation. This algorithm significantly reduces

the searching cost compared with the conventional tree-search algo-
rithm because searching is done in a distributed way. Based on the
simulation results, this algorithm can achieve a BER performance
that is very close to the optimal soft MAP detection.

2. SYSTEM MODEL

We consider a coded MIMO system with NT transmit antennas and
NR receive antennas. The MIMO transmission can be modeled as:

y = Hs + n, (1)

where H is an NR ×NT complex matrix, s = [s0 s1 ... sNT−1]
T is

an NT × 1 transmit vector, y is an NR × 1 received vector, and n is
a vector of independent zero-mean complex Gaussian noise entries
with variance σ2 per real component. Each complex symbol sk is
associated with a real bit-level vector xk = [xk,0 xk,1 ... xk,B−1]

T ,
where the b-th bit of xk is denoted as xk,b and B is the number of
bits per symbol. Symbol sk and its associated bit vector xk will be
used interchangeably through the paper. The soft-output detector is
to compute the LLR value for each bit xk,b as follows:

L(xk,b|y) = ln
P [xk,b = +1|y]

P [xk,b = −1|y]
. (2)

Assuming there is no prior knowledge of the transmit signal, using
the maxlog approximation [8], (2) can be simplified to

L(xk,b|y) ≈ 1

2σ2

(
min

s∈X
−1
k,b

d(s,y) − min
s∈X

+1
k,b

d(s,y)
)
, (3)

where set X
+1
k,b = {s|xk,b = +1} and set X

−1
k,b = {s|xk,b = −1}.

Using QR decomposition according to H = QR, where Q and R
refer to an NR×NT unitary matrix and an NT ×NT upper triangular
matrix, respectively, the Euclidean distance can be calculated as

d(s,y) = ‖y − H · s‖2 = ‖ŷ − R · s‖2 + C, (4)

where ŷ = QHy, and C is a constant that can be dropped when
calculating the LLR in (3).

3. ALGORITHM

3.1. MIMO Trellis Construction

The Euclidean distance can be computed recursively as:

dk = dk+1 + γk, k = NT − 1, NT − 2, ..., 0, (5)

3398978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/4467231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where dNT = 0, and d(s) = d0. The non-negative distance incre-
ment γk is defined as:

γk =
∣∣∣ŷk −

NT−1∑
j=k

Rk,jsj

∣∣∣2. (6)

To calculate (5), we create an MIMO trellis diagram. Figure 1 shows
an example trellis diagram for a 4 × 4 QPSK system. In the MIMO
trellis diagram, the nodes are ordered into NT vertical slices or lev-
els. The trellis starts with level NT − 1 and ends with level 0 where
level k corresponds to antenna k. In each level, there are Q = 2B

different nodes. Each node maps to a different complex QAM sym-
bol that belongs to a known constellation alphabet. Thus, each trans-
mit vector is a path through the trellis diagram. In the trellis repre-
sentation, the number of the nodes grows linearly, instead of expo-
nentially when using the tree structure, with the number of the trans-
mit antennas. The nodes in level k are represented as vk(q). Each q
is associated with a complex symbol s. In this paper, the symbol s
and its decimal label q will be used interchangeably. The edge be-
tween nodes vk+1(q

′) and vk(q) has a weight of γk(q(k)), where

q(k) is the partial symbol vector q(k) = [qk qk+1 ... qNT−1]
T . Be-

cause of the upper triangular property of R, from (6) we know that
the weight function γk can be calculated from the partial symbol
vector q(k). It should be noted that this MIMO trellis is not memo-
ryless because the weight function not only depends on the previous
state but also depends on all the previous encountered states.
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Fig. 1. An example trellis diagram for 4 × 4 QPSK system.

Given a received MIMO symbol vector, we may associate each
edge in the trellis with a weight so that the problem of MIMO detec-
tion becomes the problem of finding the minimum-weight path in the
trellis. Then the nodes encountered along this path are the detected
transmit vector. For example, the shortest path (or the ML path) in
Figure 1 is highlighted which corresponds to a (hard) detected vector
of q = [0 2 1 3]T . In the trellis diagram, a path weight d is the sum
of the branch weights along the path. The branch metric γ is added
each time to the partial path weight:

dk(q) = dk+1(q
′) + γk(q(k)), (7)

where q′ and q are the nodes at level k + 1 and k, respectively.

3.2. DM Algorithm For Soft MIMO Detection

For coded MIMO systems, the search for the shortest paths needs
to be carried out for every bit xk,b in order to compute the LLR
based on (3). It is obvious that soft detection has a much higher

computational complexity than hard detection. Traditionally, soft
detection is implemented by keeping a global “list” of the best n
candidates in the tree. The list size has to be as large as possible to
achieve good performance.

In this section, we propose a search-efficient soft detection algo-
rithm based on the distributed M -algorithm through the trellis dia-
gram. Instead of keeping a global “list”, we keep a small local list
for every trellis node. Each trellis node represents a hypothesis for
the QAM symbol transmitted by antenna k. The goal of the DM al-
gorithm is to find M shortest paths for each hypothesis for symbol
sk. Thus, for each antenna k, QM candidates found by Q different
symbol hypotheses form a bigger list for generating the LLRs. The
DM algorithm has two steps which are summarized as follows.

i) Step 1 of the DM algorithm is called Path Reduction (PR),
where it will prune the unlikely paths in the trellis by applying the
M -algorithm at each trellis node. Figure 2 illustrates the basic flow
of the PR algorithm. Let M be the local list size. The levels of
the trellis are labeled in a descending order, starting from NT − 1
and ending with 0. Each node in Figure 2 receives QM incoming
path candidates from the previous level of the trellis, and then the
M best paths, the ones with the least M cumulative weights, are
selected from these QM candidates. Next, these M survivors are
fully-extended so that each node will have QM outgoing paths to
the next level of the trellis. This PR process repeats until the end
of the trellis. The details of the PR algorithm are summarized in
Algorithm 1.

Figure 3 shows an example 4 × 4 QPSK trellis after applying
the PR operation, where each node only keeps M = 2 best incom-
ing paths, the ones with the least M cumulative path weights. Recall
that in the flow of the PR algorithm (c.f. Figure 2), the M best paths,
or survivors, are selected from QM incoming paths at each node.
These M survivors correspond to the M incoming paths for each
node in Figure 3. One important observation is that for each hy-
pothesis q (0 ≤ q ≤ Q − 1) for symbol s0, the symbol transmitted
by antenna 0, has M = 2 smallest full-path weights. So altogether
QM candidates form a bigger candidate list L0 for antenna 0. Let
the binary representation of q to be {b0 b1 ... bB−1}. Because we
have found a list of M candidates for every case of q, the LLR(bx)
can be generated based on list L0. As two Euclidean distances for
bx = 0, 1 always exist in list L0, we can compute the LLR more ac-
curately (in the traditional MIMO algorithm, LLR clipping is often
required to mitigate inaccuracies in LLR computation due to small
list size [9]). However, except for antenna 0, not every trellis node
has a full-path through the trellis. For example, trellis node v1(0)
and v1(2) in Figure 3 are dead-ends and they do not have any outgo-
ing paths. This means for hypotheses q = 0, 2 for symbol s1, there
are no associated full-path weights. To solve this problem, we can
extend the trellis by running a path augmentation operation.

ii) Step 2 of the DM algorithm is called Path Augmentation
(PA). The PA algorithm is used to extend the trellis so that each trellis
node will have a list of M smallest full-paths that pass through this
node. As described before, there is no need to do the PA operation
for nodes at level 0, i.e. antenna 0. For other antennas k �= 0, each
trellis node vk(q), where q is 0 through Q − 1, will be extended for
k levels to find the M best full-paths that pass through this node.
Figure 4 shows the flow of the PA algorithm for an antenna k �= 0,
where M = 2. The algorithm starts with retrieving the β-metrics
from step 1 of the DM algorithm, that is the β-metrics computed at
level k in the PR algorithm. Then these QM β-metrics are sent to a
search unit or searcher to select the best M outgoing paths for node
vk(q). Next, these M survivors are fully extended for the next level
of the trellis and similarly these QM newly extended paths are sent
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Algorithm 1 Path Reduction (Step1 of the DM Algorithm)
0) Initialization: Set level k = NT −1. In the beginning, there is
only one incoming path to each node vk(q′), 0 ≤ q′ ≤ Q−1. For

each node vk(q′), set the m-th surviving path metric α
(m)
k (q′) as:

α
(m)
k (q′) =

{ |ŷk − Rk,ksk|2, m = 0
+∞ , m �= 0

.

1) Path metrics calculation: For each node vk(q′), the retained

M surviving paths α
(m)
k (q′) are fully extended for the nodes in

the next level of the trellis vk−1(q), 0 ≤ q ≤ Q − 1, as follows:
for (0 ≤ q′ ≤ Q − 1)

for (0 ≤ m ≤ M − 1)
for (0 ≤ q ≤ Q − 1)

βk−1(q
′, m, q) = α

(m)
k (q′) + γ

(m)
k−1(q

(k−1)),

where βk−1(q
′, m, q) are the extended outgoing path metrics and

γ
(m)
k−1(q

(k−1)) are the branch metrics as defined in (6).
2) Path metrics selection: Because of the trellis structure,
βk−1(q

′, m, q) need to be reordered by switching the indices q′

and q to create incoming path candidates αk−1(q, m, q′) for nodes
vk−1(q), 0 ≤ q ≤ Q − 1, as: αk−1(q, m, q′) = βk−1(q

′, m, q).
Then for each node vk−1(q), the best M paths are selected from

QM candidates, where the m-th survivor is saved as α
(m)
k−1(q).

Next, set k = k − 1. If k = 0 algorithm stops, else goto 1).
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Fig. 2. Flow of the path reduction algorithm where M = 2 survivors
are retained at each node.
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to a searcher to select the best M paths for level k − 2. The search
operation repeats until it reaches the end of the trellis. As a result
of the path augmentation, each node vk(q), 0 ≤ q ≤ Q − 1, has a
list of candidates, the ones with the M smallest full-path weights. In
other words, for antenna k, each hypothesis for symbol sk has found
the M smallest Euclidean distances. By simply merging these QM
candidates, we can create a global candidate list Lk for computing
the LLRs for data bits xk,b using (2).
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4. SIMULATION RESULTS

We consider 4×4 16-QAM and 64-QAM MIMO systems where the
channel matrices are assumed to have independent random Gaussian
distributions. A sorted QR decomposition of the channel matrix is
used. The soft-output of the detector is fed to a length 2304, rate
1/2 WiMax layered LDPC decoder [10], which performs up to 15
LDPC iterations. Figures 5 and 6 compare the BER performance
with different M values. As a comparison, we also plot the BER
curves for the soft MAP detector with exhaustive-search and the soft
linear MMSE detector. When M = 1, the DM detector shows about
1 dB performance loss compared to the optimal case at BER level
of 10−5. When M = 2, 3, the DM detector shows a very small
performance degradation. When M = 4, the DM detector shows
almost no performance loss. The simulation result indicates that the
DM detector even with a small M can achieve near-ML detection
performance.

5. ALGORITHM COMPLEXITY ANALYSIS

Sorting of candidates is often the bottleneck in the traditional K-best
detection algorithms. In this section, we compare the sorting cost
of the proposed DM algorithm with that of the K-best algorithm.
Both DM and K-best algorithms need to carry out a (n, m) sorting
operation: find the best m candidates out of n candidates. For large
m, which is the case in the K-best algorithms, a full sorting of n
candidates is typically needed which significantly limits the system
throughput. For example, Kim suggests a large K = 512 to achieve
good performance for a 4 × 4 16-QAM system [11].

By contrast, the DM algorithm can achieve good performance
with small M , e.g. M = 2, so the (n, m) sorting operation does
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Fig. 5. Simulation results for a LDPC-coded 4×4 16-QAM system.
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Fig. 6. Simulation results for a LDPC-coded 4×4 64-QAM system.

not necessarily require a full sorting of n candidates, i.e. finding the
smallest number or the two smallest numbers from n candidates can
be realized very efficiently. Table 1 compares the (n, m) sorting cost
of the DM and the K-best algorithms for 4 × 4 16-QAM systems.
The sorting cost is measured by the number of pairwise comparisons.
The complexity of (n, m) is assumed to be n log(n). For the DM al-
gorithm, the sorting complexity is measured by Q(QM) log(QM),
where Q = 16. For the K-best algorithm, the sorting complex-
ity is given by (QK) log(QK). Compared to the traditional K-
best algorithm which needs to perform large sorting tasks, the pro-
posed DM algorithm has a much lower sorting complexity which can
lead to efficient high-speed hardware implementations. Compared
to the depth-first soft sphere detector, e.g. [2], which has variable-
complexity, the DM algorithm has a fixed-complexity which is more
suitable for hardware implementation.

6. CONCLUSION

We propose a low-complexity, high-performance, soft-output MIMO
detection algorithm. The detector significantly reduces the sorting
cost by using a distributed M -algorithm through the trellis diagram.
This algorithm is very suitable for parallel implementation.

Table 1. Algorithm complexity comparison

Algorithm Complexity BER degradation @10−5

DM (M=1) 1024 0.95 dB

DM (M=2) 2560 0.35 dB

DM (M=3) 4289 0.15 dB

DM (M=4) 6144 0.05 dB

K-best (K=64) 10240 0.8 dB

K-best (K=128) 22528 0.3 dB

K-best (K=256) 49152 0.1 dB

K-best (K=512) 106496 0.03 dB
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