2,447 research outputs found

    The role of asymptotic functions in network optimization and feasibility studies

    Full text link
    Solutions to network optimization problems have greatly benefited from developments in nonlinear analysis, and, in particular, from developments in convex optimization. A key concept that has made convex and nonconvex analysis an important tool in science and engineering is the notion of asymptotic function, which is often hidden in many influential studies on nonlinear analysis and related fields. Therefore, we can also expect that asymptotic functions are deeply connected to many results in the wireless domain, even though they are rarely mentioned in the wireless literature. In this study, we show connections of this type. By doing so, we explain many properties of centralized and distributed solutions to wireless resource allocation problems within a unified framework, and we also generalize and unify existing approaches to feasibility analysis of network designs. In particular, we show sufficient and necessary conditions for mappings widely used in wireless communication problems (more precisely, the class of standard interference mappings) to have a fixed point. Furthermore, we derive fundamental bounds on the utility and the energy efficiency that can be achieved by solving a large family of max-min utility optimization problems in wireless networks.Comment: GlobalSIP 2017 (to appear

    Subwavelength position sensing using nonlinear feedback and wave chaos

    Full text link
    We demonstrate a position-sensing technique that relies on the inherent sensitivity of chaos, where we illuminate a subwavelength object with a complex structured radio-frequency field generated using wave chaos and a nonlinear feedback loop. We operate the system in a quasi-periodic state and analyze changes in the frequency content of the scalar voltage signal in the feedback loop. This allows us to extract the object's position with a one-dimensional resolution of ~\lambda/10,000 and a two-dimensional resolution of ~\lambda/300, where \lambda\ is the shortest wavelength of the illuminating source.Comment: 4 pages, 4 figure

    Characterization of Vehicle Behavior with Information Theory

    Get PDF
    This work proposes the use of Information Theory for the characterization of vehicles behavior through their velocities. Three public data sets were used: i.Mobile Century data set collected on Highway I-880, near Union City, California; ii.Borl\"ange GPS data set collected in the Swedish city of Borl\"ange; and iii.Beijing taxicabs data set collected in Beijing, China, where each vehicle speed is stored as a time series. The Bandt-Pompe methodology combined with the Complexity-Entropy plane were used to identify different regimes and behaviors. The global velocity is compatible with a correlated noise with f^{-k} Power Spectrum with k >= 0. With this we identify traffic behaviors as, for instance, random velocities (k aprox. 0) when there is congestion, and more correlated velocities (k aprox. 3) in the presence of free traffic flow

    Electrostatics of electron-hole interactions in van der Waals heterostructures

    Full text link
    The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poissons equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.Comment: 10 pages, 8 figure

    All-strain based valley filter in graphene nanoribbons using snake states

    Full text link
    A pseudo-magnetic field kink can be realized along a graphene nanoribbon using strain engineering. Electron transport along this kink is governed by snake states that are characterized by a single propagation direction. Those pseudo-magnetic fields point towards opposite directions in the K and K' valleys, leading to valley polarized snake states. In a graphene nanoribbon with armchair edges this effect results in a valley filter that is based only on strain engineering. We discuss how to maximize this valley filtering by adjusting the parameters that define the stress distribution along the graphene ribbon.Comment: 8 pages, 6 figure

    Recomendações básicas para a cultura do arroz de sequeiro no Amapá.

    Get PDF
    Este informe tem como objetivo colocar a disposição dos técnicos, extensionistas e produtores rurais, algumas recomendações básicas para a melhoria da produtividade e da qualidade do arroz de sequeiro cultivado no Estado do Amapá.bitstream/item/64952/1/AP-1995-recomendacoes-basicas-cultura-arroz.pd

    Maravilha: nova cultivar de arroz de sequeiro para o Amapá.

    Get PDF
    O trabalho visa selecionar genotipos de arroz que possuam elevada produtividade, resistência as principais pragas e doenças e boa qualidade de grãos.bitstream/item/64960/1/AP-1997-maravilha-arroz-sequeiro.pd
    • …
    corecore