620 research outputs found

    Glassy dynamics, metastability limit and crystal growth in a lattice spin model

    Full text link
    We introduce a lattice spin model where frustration is due to multibody interactions rather than quenched disorder in the Hamiltonian. The system has a crystalline ground state and below the melting temperature displays a dynamic behaviour typical of fragile glasses. However, the supercooled phase loses stability at an effective spinodal temperature, and thanks to this the Kauzmann paradox is resolved. Below the spinodal the system enters an off-equilibrium regime corresponding to fast crystal nucleation followed by slow activated crystal growth. In this phase and in a time region which is longer the lower the temperature we observe a violation of the fluctuation-dissipation theorem analogous to structural glasses. Moreover, we show that in this system there is no qualitative difference between a locally stable glassy configuration and a highly disordered polycrystal

    Generalized strategies in the Minority Game

    Full text link
    We show analytically how the fluctuations (i.e. standard deviation) in the Minority Game (MG) can be made to decrease below the random coin-toss limit if the agents use more general behavioral strategies. This suppression of the standard deviation results from a cancellation between the actions of a crowd, in which agents act collectively and make the same decision, and an anticrowd in which agents act collectively by making the opposite decision to the crowd.Comment: Revised manuscript: a few minor typos corrected. Results unaffecte

    Continuum time limit and stationary states of the Minority Game

    Full text link
    We discuss in detail the derivation of stochastic differential equations for the continuum time limit of the Minority Game. We show that all properties of the Minority Game can be understood by a careful theoretical analysis of such equations. In particular, i) we confirm that the stationary state properties are given by the ground state configurations of a disordered (soft) spin system; ii) we derive the full stationary state distribution; iii) we characterize the dependence on initial conditions in the symmetric phase and iv) we clarify the behavior of the system as a function of the learning rate. This leaves us with a complete and coherent picture of the collective behavior of the Minority Game. Strikingly we find that the temperature like parameter which is introduced in the choice behavior of individual agents turns out to play the role, at the collective level, of the inverse of a thermodynamic temperature.Comment: Revised version (several new results added). 12 pages, 5 figure

    Topological Signature of First Order Phase Transitions

    Full text link
    We show that the presence and the location of first order phase transitions in a thermodynamic system can be deduced by the study of the topology of the potential energy function, V(q), without introducing any thermodynamic measure. In particular, we present the thermodynamics of an analytically solvable mean-field model with a k-body interaction which -depending on the value of k- displays no transition (k=1), second order (k=2) or first order (k>2) phase transition. This rich behavior is quantitatively retrieved by the investigation of a topological invariant, the Euler characteristic, of some submanifolds of the configuration space. Finally, we conjecture a direct link between the Euler characteristic and the thermodynamic entropy.Comment: 6 pages, 2 figure

    Enhanced winnings in a mixed-ability population playing a minority game

    Full text link
    We study a mixed population of adaptive agents with small and large memories, competing in a minority game. If the agents are sufficiently adaptive, we find that the average winnings per agent can exceed that obtainable in the corresponding pure populations. In contrast to the pure population, the average success rate of the large-memory agents can be greater than 50 percent. The present results are not reproduced if the agents are fed a random history, thereby demonstrating the importance of memory in this system.Comment: 9 pages Latex + 2 figure

    On the stationary points of the TAP free energy

    Full text link
    In the context of the p-spin spherical model, we introduce a method for the computation of the number of stationary points of any nature (minima, saddles, etc.) of the TAP free energy. In doing this we clarify the ambiguities related to the approximations usually adopted in the standard calculations of the number of states in mean field spin glass models.Comment: 11 pages, 1 Postscript figure, plain Te

    Interface Fluctuations under Shear

    Full text link
    Coarsening systems under uniform shear display a long time regime characterized by the presence of highly stretched and thin domains. The question then arises whether thermal fluctuations may actually destroy this layered structure. To address this problem in the case of non-conserved dynamics we study an anisotropic version of the Burgers equation, constructed to describe thermal fluctuations of an interface in the presence of a uniform shear flow. As a result, we find that stretched domains are only marginally stable against thermal fluctuations in d=2d=2, whereas they are stable in d=3d=3.Comment: 3 pages, shorter version, additional reference

    Geometric approach to the dynamic glass transition

    Full text link
    We numerically study the potential energy landscape of a fragile glassy system and find that the dynamic crossover corresponding to the glass transition is actually the effect of an underlying geometric transition caused by a qualitative change in the topological properties of the landscape. Furthermore, we show that the potential energy barriers connecting local glassy minima increase with decreasing energy of the minima, and we relate this behaviour to the fragility of the system. Finally, we analyze the real space structure of activated processes by studying the distribution of particle displacements for local minima connected by simple saddles

    Mixed population Minority Game with generalized strategies

    Full text link
    We present a quantitative theory, based on crowd effects, for the market volatility in a Minority Game played by a mixed population. Below a critical concentration of generalized strategy players, we find that the volatility in the crowded regime remains above the random coin-toss value regardless of the "temperature" controlling strategy use. Our theory yields good agreement with numerical simulations.Comment: Revtex file + 3 figure
    • …
    corecore