6 research outputs found

    Human monoclonal antibodies to Plasmodium falciparum circumsporozoite protein for transient passive protection of malaria travelers to endemic areas

    Get PDF
    Plasmodium falciparum, is a protozoa that causes over 214 million cases of Malaria worldwide and the World Health Organization reported an estimated 438,000 deaths attributed to malaria in 2015. Current prevention strategies have reduced malaria cases but they are either costly, have poor efficacy or resistance has begun to develop. There is a global need for an effective pre-exposure prophylaxis treatment. The leading Malaria vaccine candidate is RTS,S which contains a monovalent Plasmodium falciparum circumsporozoite protein (CSP). The goal of this vaccine is to induce anti-CSP antibodies that would block sporozoite invasion of hepatocytes and thereby hinder parasite development into a blood-stage infection that causes malaria morbidity and mortality. Antibodies isolated from individuals who have received the RTS,S vaccine have been shown to prevent infection of hepatocytes, suggesting that CSP antibodies could be used prophylactically. However, phase III trial results of the vaccine have shown underwhelming efficacy in children. Growing resistance to transient protection strategies for travelers and low efficacy in vaccine trials suggest there is a need for a new treatment strategy. The generation of CSP specific human monoclonal antibodies (mAbs) would be useful as prevention especially for individuals that are temporarily exposed to Malaria in endemic regions such as travelers or military personnel. Isolation and production of therapeutic mAbs traditionally utilizes a handful of techniques including antibody engineering, phage display or hybridoma generation from transgenic mice. We have sorted antigen-specific memory B-cells from the peripheral blood of children naturally infected with malaria to isolate CSP-specific memory B-cells. These cells were individually sorted and PCR was performed to amplify antibody variable regions of the B-cellā€™s antibody mRNA. Samples that produced heavy and light chain antibody sequence were cloned and transiently expressed. We plan to characterize these mAbs for binding and neutralization of CSP to identify functional therapeutic mAbs

    Humanized Mice for the Generation of HIV-1 Human Monoclonal Antibodies

    Get PDF
    Background: Despite the length of time HIV has been wreaking havoc on its victims, improvements in the prevention and treatment of HIV are needed. Anti-retroviral therapy can be effective but is expensive and not entirely accessible for people infected in third world countries. Several promising broadly neutralizing antibodies have been isolated from infected individuals; we propose that generating antigen specific human monoclonal antibodies using humanized mice further represents a promising approach to engineer prophylactic antibodies to reduce spread and infection of HIV. Methods: Immunodeficient mice were engrafted with fetal liver and thymus (BLT) prior to infection with different HIV isolates. HIV infection of the mice was monitored by viral load and antibody response followed by ELISA using gp120, gp41 or gp120/CD4 complex as antigens. Approximately 8-12 weeks post infection, spleens were harvested and splenocytes fused with human fusion partner HMMA 2.5 to isolate antibody-expressing hybridomas. Lead clones were scaled and purified for testing in functional assays such as TZM-bl neutralization assays as well as ADCVI to determine neutralizing and cytotoxic ability of the antibodies. Antibody sequences were also determined for analysis. Results: A robust, specific antibody response, of both IgG and IgA isotypes, was generated in response to HIV infection. Over 60 hybridomas were created that were not only immunoreactive with env antigens, but also had neutralization activity. Moreover, variable family usage was not limited and somatic mutation was clearly evident. Conclusions: These findings suggest that humanized BLT mice are a novel source for well-characterized, stable human monoclonal antibodies to HIV

    Discovery and Development of Human Monoclonal Antibodies to Block RhD Alloimmunization During Pregnancy

    Get PDF
    Exposure of an Rh negative mother to red blood cells (RBCs) of an Rh positive fetus results in alloimmunization and development of anti-RhD antibodies. The anti-RhD antibodies cause hemolytic disease of the new born babies during subsequent pregnancies. Current prophylactic treatment involves polyclonal anti-RhD IgG purified from plasma of humans and is administered in approximately 20% of pregnancies. While the current prophylaxis is effective, it involves the use of human plasma and non-RhD specific antibodies, thus posing a risk of transmitting infections and undesired antibody reactions. Moreover, there is a serious scarcity of plasma donors to meet the requirement of anti-RhD antibodies. In this study we propose to discover and develop anti-RhD monoclonal human antibodies to replace the current polyclonal prophylaxis. We are using humanized BLT mice (fetal CD34+ stem cells, liver and thymus) reconstituted with RhD negative donor material and were immunized by using adenovirus containing RhD transgene. Serum samples were collected after 4-6 weeks of immunization. Our results show that the RhD immunized mice had considerably higher titer of IgG and IgA antibodies in the serum compared to the control, suggesting an immune response developed upon immunization. Splenocytes from antibody producing mice will be fused with a human fusion partner for the isolation of hybridomas producing human monoclonal antibodies. The immunoreactivity and functional activity of these antibodies will be discussed

    Human Anti-HIV-1 gp120 Monoclonal Antibodies with Neutralizing Activity Cloned from Humanized Mice Infected with HIV-1.

    No full text
    Broadly neutralizing, anti-HIV-1 gp120 mAbs have been isolated from infected individuals, and there is considerable interest in developing these reagents for Ab-based immunoprophylaxis and treatment. As a means to identify potentially new anti-HIV Abs, we exploited humanized NOD-scid IL2rĪ³null mice systemically infected with HIV-1 to generate a wide variety of Ag-specific human mAbs. The Abs were encoded by a diverse range of variable gene families and Ig classes, including IgA, and several showed significant levels of somatic mutation. Moreover, the isolated Abs not only bound target Ags with similar affinity as broadly neutralizing Abs, they also demonstrated neutralizing ability against multiple HIV-1 clades. The use of humanized mice will allow us to use our knowledge of HIV-1 gp120 structure and function, and the immune response targeting this protein, to generate native human prophylactic Abs to reduce the infection and spread of HIV-1
    corecore