16 research outputs found

    Dosimetry of Photon and Proton MRI Guided Radiotherapy Beams using Silicon Array Dosimeters

    Get PDF
    The integration of online magnetic resonance imaging (MRI) with photon and pro-ton radiotherapy has potential to overcome the soft tissue contrast limitations of the current standard of care kV-image guided radiotherapy in some challenging treat-ment sites. By directly visualising soft tissue targets and organs at risk, removing the dependence on surrogates for image guidance, it is expected there will be a decrease in the geometric uncertainties related to daily patient setup. This new approach to image guided radiotherapy presents unique challenges due to the permanent mag-netic field of the integrated MRI unit. The trajectory of charged particles including dose depositing secondary electrons are perturbed by the magnetic field, adding to the challenge of calculating the patient dosimetry and validating the calculation with measurement as is standard practice in radiotherapy. The magnetic field may also effect the operation and response of radiation detectors and a method of accurately characterising the influence of the magnetic field on detector response and operation is required. This thesis reports progress made towards real time high spatial resolution dosime-try of photon and proton MRI guided radiotherapy beams using novel monolithic silicon detectors designed at the Centre for Medical Radiation Physics (CMRP). One challenge in experimentally characterising the magnetic field effects on a radiation detectors operation is how to perform dosimetry measurements with and without a magnetic field of varying strength and orientation from a single radiation source as this is not feasible on existing MRI linacs with a permanent magnetic field of fixed strength. A bespoke semi-portable magnet device was developed to meet this need. The device employs an adjustable iron yoke and focusing cones to vary the magnetic field of the central volume, a 0.3 T field can be achieved for volume to 10 x 10 x 10 cm3 and up to a 1.2 T for a volume of at least 3 x 3 x 3 cm3. The device is de-signed to be used with a clinical linear accelerator in both inline and perpendicular magnetic field orientations to meet the challenge of detector characterisation. The performance of the magnetic field generated by the device was within ±2 % of finite element modelling predictions of all configurations tested

    Towards MR-guided electron therapy: Measurement and simulation of clinical electron beams in magnetic fields

    Get PDF
    © 2020 Associazione Italiana di Fisica Medica Purpose: In the current era of MRI-linac radiotherapy, dose optimization with arbitrary dose distributions is a reality. For the first time, we present new and targeted experiments and modeling to aid in evaluating the potential dose improvements offered with an electron beam mode during MRI-linac radiotherapy. Methods: Small collimated (1 cm diameter and 1.5 × 1.5 cm2 square) electron beams (6, 12 and 20 MeV) from a clinical linear accelerator (Varian Clinac 2100C) are incident perpendicular and parallel to the strong and localized magnetic fields (0–0.7 T) generated by a permanent magnet device. Gafchromic EBT3 film is placed inside a slab phantom to measure two-dimensional dose distributions. A benchmarked and comprehensive Monte Carlo model (Geant4) is established to directly compare with experiments. Results: With perpendicular fields a 5% narrowing of the beam FWHM and a 10 mm reduction in the 15% isodose penetration is seen for the 20 MeV beam. In the inline setup the penumbral width is reduced by up to 20%, and a local central dose enhancement of 100% is observed. Monte Carlo simulations are in agreement with the measured dose distributions (2% or 2 mm). Conclusion: A new range of experiments have been performed to offer insight into how an electron beam mode could offer additional choices in MRI-linac radiotherapy. The work extends on historic studies to bring a successful unified experimental and Monte Carlo modeling approach for studying small field electron beam dosimetry inside magnetic fields. The results suggest further work, particularly on the inline magnetic field scenario

    Characterization of a high spatiotemporal resolution monolithic silicon strip detector for MRI-linac dosimetry

    Get PDF
    Multiple vendors are now offering real-time MRI-guided radiotherapy systems. Quality assurance of small fields delivered with an MR-RT system requires detectors with high spatiotemporal resolution, and magnetic insensitivity. High spatial resolution is required to characterise the asymmetric penumbra that transverse designs demonstrate. In this work the authors describe the characterisation of the dosimetric performance of a monolithic silicon strip detector mounted to a flexible polymide (Kapton) printed circuit board intended for use in MRI-linac dosimetry

    Quality assurance of VMAT on flattened and flattening filter-free accelerators using a high spatial resolution detector

    Get PDF
    © 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine Purpose: This study investigated the use of high spatial resolution solid-state detectors (DUO and Octa) combined with an inclinometer for machine-based quality assurance (QA) of Volumetric Modulated Arc Therapy (VMAT) with flattened and flattening filter-free beams. Method: The proposed system was inserted in the accessory tray of the gantry head of a Varian 21iX Clinac and a Truebeam linear accelerator. Mutual dependence of the dose rate (DR) and gantry speed (GS) was assessed using the standard Varian customer acceptance plan (CAP). The multi-leaf collimator (MLC) leaf speed was evaluated under static gantry conditions in directions parallel and orthogonal to gravity as well as under dynamic gantry conditions. Measurements were compared to machine log files. Results: DR and GS as a function of gantry angle were reconstructed using the DUO/inclinometer and in agreement to within 1% with the machine log files in the sectors of constant DR and GS. The MLC leaf speeds agreed with the nominal speeds and those extracted from the machine log files to within 0.03 cm s−1. The effect of gravity on the leaf motion was only observed when the leaves traveled faster than the nominal maximum velocity stated by the vendor. Under dynamic gantry conditions, MLC leaf speeds ranging between 0.33 and 1.42 cm s−1 were evaluated. Comparing the average MLC leaf speeds with the machine log files found differences between 0.9% and 5.7%, with the largest discrepancy occurring under conditions of fastest leaf velocity, lowest DR and lowest detector signal. Conclusions: The investigation on the use of solid-state detectors in combination with an inclinometer has demonstrated the capability to provide efficient and independent verification of DR, GS, and MLC leaf speed during dynamic VMAT delivery. Good agreement with machine log files suggests the detector/inclinometer system is a useful tool for machine-specific VMAT QA

    Modelling the x-ray source for the Australian MRI-Linac

    Get PDF
    MRI-guided radiotherapy allows real-time imaging during treatment however the magnetic field influences the dose distribution in the patient. An accurate model of the radiation beam and the encompassing magnetic field is important to predict dosimetry changes. The purpose of this work is to develop a Monte Carlo model of the Australian MRI-Linac to be used as input into a dose calculation tool for treatment planning. The Australian MRI-Linac is a 1 T inline system with a 6MV flattening filter free photon beam. Commissioning measurements were undertaken both with and without the magnetic field present, PDDs and profiles were used to develop a model with the Geant4 toolkit. To date the model at 0 T matches within ± 2% of measured data. Ongoing work involves measurements at 1 T at various linac to MRI isocentre distances, the magnetic field model at each configuration is also under development

    The Australian MRI-Linac Program: measuring profiles and PDD in a horizontal beam

    Get PDF
    The Australian MRI-Linac consists of a fixed horizontal photon beam combined with a MRI. Commissioning required PDD and profiles measured in a horizontal set-up using a combination of water tank measurements and gafchromic film. To validate the methodology, measurements were performed comparing PDD and profiles measured with the gantry angle set to 0 and 90° on a conventional linac. Results showed agreement to within 2.0% for PDD measured using both film and the water tank at gantry 90° relative to PDD acquired using gantry 0°. Profiles acquired using a water tank at both gantry 0 and 90° showed agreement in FWHM to within 1 mm. The agreement for both PDD and profiles measured at gantry 90° relative to gantry 0° curves indicates that the methodology described can be used to acquire the necessary beam data for horizontal beam lines and in particular, commissioning the Australian MRI-linac

    A high resolution 2D array detector system for small-field MRI-linac applications

    No full text
    A monolithic silicon small-field array detector is proposed for relative dosimetry applications in hybrid MRI-linac systems. The detector has high sampling resolution, with 512 active elements arranged with 2 mm pitch over a 46 mm x 46 mm detection area. Experimental measurements were performed in a custom-designed permanent magnet device that is compatible with a standard clinical linear accelerator. It can be configured in both inline and perpendicular magnetic-field-to-photon-beam orientations and produces magnetic field strengths 0.95 T and 1.20 T, respectively. Monte Carlo simulation data, obtained using the GEANT4 toolkit, are presented to supplement experimental data. Beam profiles show agreement to EBT3 film within 0.5 mm for FWHM and penumbral width measurement of small square fields (width ranging from 0.75 cm to 2.25 cm), in both inline and perpendicular magnetic field orientations. The detector can be used to accurately resolve normalised beam profiles in magnetic fields. The impact of electron return effects (ERE) in a small air gap surrounding the detector was also quantified. For the perpendicular orientation, a reduced profile intensity was observed for an increasing air gap width above the detector (10% at 2 mm) due to ERE. In the inline orientation, a very small increase in response relative to the zero field case was observed with an air gap above the detector (2% at 2 mm). Calibration of the device in a magnetic field will therefore be necessary; the zero field calibration is non-transferable. The MagicPlate-512 provides a high-resolution real time alternative to accurately measure normalised beam profiles in magnetic fields, and is expected to be a suitable array detector for use in magnetic field environments typical of MRI-linacs

    A feasibility study for high-resolution silicon array detector performance in the magnetic field of a permanent magnet system

    No full text
    © 2019 American Association of Physicists in Medicine Purpose: Magnetic field effects on dose distribution and detector functionality must be well understood. The detector utilized to investigate these magnetic field effects was the DUO silicon array detector; the performance of this high spatial resolution detector was assessed under these conditions. The results were compared to Gafchromic EBT3 film to highlight any intrinsic magnetic field effects in the silicon. The results were also compared to previously published MagicPlate-512 (M512) data. The DUO has an improved spatial resolution (200 µm) over the M512 (2 mm). Methods: A permanent magnet named Magnetic Apparatus for RaDiation Oncology Studies (MARDOS) paired with a standard linear accelerator (linac) enables either transverse (1.2 T) or inline (0.95 T) orientations of the magnetic field with respect to the radiation beam. A 6 MV Varian 2100C Linac provided the radiation component for the measurements. The DUO detector has 505 sensitive volumes (each volume measuring 800 × 40 × 100 µm3) organized in two orthogonal, linear arrays. The DUO was embedded in a solid water phantom in the first set-up and then a solid lung phantom in the second set-up and placed between the magnet cones. Beam profiles were compared under the magnetic field conditions and 0 T. Small field sizes from 0.8 × 0.8 cm2 up to 2.3 × 2.3 cm2 were investigated. The size of the air gap above the sensitive volumes of the DUO was investigated in the transverse orientation to assess the anticipated magnetic field effects. Full width at half maximum (FWHM), 80–20% penumbral widths and maximum dose differences between detectors and between the presence/absence of a magnetic field were investigated. Symmetry was also assessed for investigation of profile skewness under the transverse field. Results: The penumbral widths measured by the DUO detector demonstrated good agreement with film and the M512 to within an average of 0.5 mm (within uncertainty: ±1 mm). The static inline magnetic field had minimal effect on the profiles in solid water. As expected, the lower density of solid lung meant that this material was more susceptible to demonstrating magnetic field effects in the dose deposited. The greatest penumbral narrowing due to the inline field (0.7 mm) occurred in lung. Central axis dose increase was greatest in lung (maximum: 9%). The transverse field widened penumbra, most notably in the solid lung phantom, by a maximum of 2.3 mm. The largest asymmetry due to the transverse field (4.6%) was also in solid lung. When the air gap above the DUO was filled with bolus, the dose maximum measured by the DUO was within 1.4% of film. Conclusions: The DUO detector has been shown to be successful in accurately describing the dose changes for small field sizes to within a 200-µm resolution in an environment resembling that of an MRI-linac. The DUO measurements were in agreement with both film and the M512 measurements, and therefore the DUO was found to be an appropriate alternative to the M512, with improvement in terms of its higher spatial resolution. MARDOS provided a suitable environment for these preliminary tests before progressing to the MRI-linac
    corecore