4 research outputs found

    Conservation of oceanic island floras: Present and future global challenges

    Get PDF
    Currentthreatstotheplanet’sbiodiversityareunprecedented,andtheyparticularlyimperilinsular floras.Inthisinvestigation,weusethethreatfactorsidentifiedbytheMillenniumEcosystem Assessmentasthemaindriversofbiodiversitylossonislandstodefineandrank13current,continuing threatstotheplantdiversityofninefocalarchipelagoswherevolcanicorigin(orintheSeychellesa prolongedisolationafteracontinentalorigin)hasproducedahighdegreeofendemicityandfragilityin the faceofhabitatalteration.Wealsoconductaglobalendangermentassessmentbasedonthe numbersofinsularendemicplantsintheendangered(EN)andcriticallyendangered(CR)IUCN categoriesfor53islandgroupswithanestimated9951endemicplantspecies,providinga representativesampleoftheworld’sinsularsystemsandtheirfloristicrichness.Ouranalysesindicate that isolationdoesnotsignificantlyinfluenceendangerment,butplantendemicsfromverysmall islandsaremoreoftencriticallyendangered.Weestimatethatbetween3500and6800oftheestimated 70,000 insularendemicplantspeciesworldwidemightbehighlythreatened(CR+EN)andbetweenca. 2000 and2800ofthemincriticaldangerofextinction(CR).Basedontheseanalyses,andona worldwideliteraturereviewofthebiologicalthreatfactorsconsidered,weidentifychallenging questionsforconservationresearch,asking(i)whatarethemosturgentprioritiesfortheconservation of insularspeciesandfloras,and(ii)withtheknowledgeandassetsavailable,howcanweimprovethe impactofconservationscienceandpracticeonthepreservationofislandbiodiversity?Ouranalysis indicatesthatthesynergisticactionofmanythreatfactorscaninducemajorecologicaldisturbances, leadingtomultipleextinctions.Wereviewweaknessesandstrengthsinconservationresearchand managementintheninefocalarchipelagos,andhighlighttheurgentneedforconservationscientiststo shareknowledgeandexpertise,identifyanddiscusscommonchallenges,andformulatemulti- disciplinaryconservationobjectivesforinsularplantendemicsworldwide.Toourknowledge,thisisthe mostup-to-dateandcomprehensivesurveyyettoreviewthethreatfactorstonativeplantsonoceanic islandsanddefinepriorityresearchquestions

    Temporal, but not spatial, changes in expression patterns of petal identity genes are associated with loss of papillate conical cells and the shift to bird pollination in Macaronesian Lotus (Leguminosae)

    No full text
    In the generally bee-pollinated genus Lotus a group of four species have evolved bird-pollinated flowers. The floral changes in these species include altered petal orientation, shape and texture. In Lotus these characters are associated with dorsiventral petal identity, suggesting that shifts in the expression of dorsal identity genes may be involved in the evolution of bird pollination. Of particular interest is Lotus japonicus CYCLOIDEA 2 (LjCYC2), known to determine the presence of papillate conical cells on the dorsal petal in L. japonicus. Bird-pollinated species are unusual in not having papillate conical cells on the dorsal petal. Using RT-PCR at various stages of flower development, we determined the timing of expression in all petal types for the three putative petal identity genes (CYC-like genes) in different species with contrasting floral morphology and pollination syndromes. In bird-pollinated species the dorsal identity gene, LjCYC2, is not expressed at the floral stage when papillate conical cells are normally differentiating in bee-pollinated species. In contrast, in bee-pollinated species, LjCYC2 is expressed during conical cell development. Changes in the timing of expression of the above two genes are associated with modifications in petal growth and lateralisation of the dorsal and ventral petals in the bird-pollinated species. This study indicates that changes in the timing, rather than spatial distribution, of expression likely contribute to the modifications of petal micromorphology and petal size during the transition from bee to bird pollination in Macaronesian Lotus species.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Population differentiation in relation to conservation: nuclear microsatellite variation in the Canary Island endemic Lotus sessilifolius (Fabaceae)

    No full text
    We developed and characterized microsatellite markers for the genus Lotus, a large genus of leguminous plants containing many endemic species of conservation interest. The marker system was then used to survey patterns of population genetic variation of Lotus sessilifolius, a Canary Island endemic occurring on four islands (La Palma, El Hierro, La Gomera and Tenerife) with the aim of determining whether any of its populations are worthy of special conservation because of genetic distinctiveness. We found strong differentiation between populations with conspicuous geographical signal revealed by population clustering. Generally, populations from each island grouped together. A very striking exception to this pattern is a single population from Tenerife (Tejina-Milán: Anaga Peninsula), which is separated from other Tenerife populations by both genetic clustering and a STRUCTURE analysis, and also shows signs of inbreeding. The genetic distinctiveness of this population deserves especial conservation attention, and may be related to the ancient geological history of the Anaga Peninsula. Importantly, this investigation sets the stage for conservation genetics research in other highly threatened species in the same genus.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore