48 research outputs found

    Non-Alcoholic Fatty Liver Disease: From Pathogenesis to Clinical Impact

    Get PDF
    Non-Alcoholic Fatty Liver Disease (NAFLD) is caused by the accumulation of fat in over 5% of hepatocytes in the absence of alcohol consumption. NAFLD is considered the hepatic manifestation of metabolic syndrome (MS). Recently, an expert consensus suggested as more appropriate the term MAFLD (metabolic-associated fatty liver disease). Insulin resistance (IR) plays a key role in the development of NAFLD, as it causes an increase in hepatic lipogenesis and an inhibition of adipose tissue lipolysis. Beyond the imbalance of adipokine levels, the increase in the mass of visceral adipose tissue also determines an increase in free fatty acid (FFA) levels. In turn, an excess of FFA is able to determine IR through the inhibition of the post-receptor insulin signal. Adipocytes secrete chemokines, which are able to enroll macrophages inside the adipose tissue, responsible, in turn, for the increased levels of TNF-. The latter, as well as resistin and other pro-inflammatory cytokines such as IL-6, enhances insulin resistance and correlates with endothelial dysfunction and an increased cardiovascular (CV) risk. In this review, the role of diet, intestinal microbiota, genetic and epigenetic factors, low-degree chronic systemic inflammation, mitochondrial dysfunction, and endoplasmic reticulum stress on NAFLD have been addressed. Finally, the clinical impact of NAFLD on cardiovascular and renal outcomes, and its direct link with type 2 diabetes have been discussed

    Cardiac Hypertrophy: from Pathophysiological Mechanisms to Heart Failure Development

    Get PDF
    Cardiac hypertrophy develops in response to increased workload to reduce ventricular wall stress and maintain function and efficiency. Pathological hypertrophy can be adaptive at the beginning. However, if the stimulus persists, it may progress to ventricular chamber dilatation, contractile dysfunction, and heart failure, resulting in poorer outcome and increased social burden. The main pathophysiological mechanisms of pathological hypertrophy are cell death, fibrosis, mitochondrial dysfunction, dysregulation of Ca2+-handling proteins, metabolic changes, fetal gene expression reactivation, impaired protein and mitochondrial quality control, altered sarcomere structure, and inadequate angiogenesis. Diabetic cardiomyopathy is a condition in which cardiac pathological hypertrophy mainly develop due to insulin resistance and subsequent hyperglycaemia, associated with altered fatty acid metabolism, altered calcium homeostasis and inflammation. In this review, we summarize the underlying molecular mechanisms of pathological hypertrophy development and progression, which can be applied in the development of future novel therapeutic strategies in both reversal and prevention

    Pathophysiological mechanisms and clinical evidence of relationship between Nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease

    Get PDF
    Evidence suggests a close connection between Nonalcoholic Fatty Liver Disease (NAFLD) and increased cardiovascular (CV) risk. Several cross-sectional studies report that NAFLD is related to preclinical atherosclerotic damage, and to coronary, cerebral and peripheral vascular events. Similar results have been showed by prospective studies and also by meta-analyzes on observational studies. The pathophysiological mechanisms of NAFLD are related to insulin resistance, which causes a dysfunction in adipokine production, especially adiponectin, from adipose tissue. A proinflammatory state and an increase in oxidative stress, due to increased reacting oxygen species (ROS) formation with consequent oxidation of free fatty acids and increased de novo lipogenesis with accumulation of triglycerides, are observed. These mechanisms may have an impact on atherosclerotic plaque formation and progression, and they can lead to increased cardiovascular risk in subjects with NAFLD. This review extensively discusses and comments current and developing NAFLD therapies and their possible impact on cardiovascular outcome

    Role of Albuminuria in Detecting Cardio-Renal Risk and Outcome in Diabetic Subjects

    Get PDF
    The clinical significance of albuminuria in diabetic subjects and the impact of its reduction on the main cardiorenal outcomes by different drug classes are among the most interesting research focuses of recent years. Although nephrologists and cardiologists have been paying attention to the study of proteinuria for years, currently among diabetics, increased urine albumin excretion ascertains the highest cardio-renal risk. In fact, diabetes is a condition by itself associated with a high-risk of both micro/macrovascular complications. Moreover, proteinuria reduction in diabetic subjects by several treatments lowers both renal and cardiovascular disease progression. The 2019 joint ESC-EASD guidelines on diabetes, prediabetes and cardiovascular (CV) disease assign to proteinuria a crucial role in defining CV risk level in the diabetic patient. In fact, proteinuria by itself allows the diabetic patient to be staged at very high CV risk, thus affecting the choice of antihyperglycemic drug class. The purpose of this review is to present a clear update on the role of albuminuria as a cardio-renal risk marker, starting from pathophysiological mechanisms in support of this role. Besides this, we will show the prognostic value in observational studies, as well as randomized clinical trials (RCTs) demonstrating the potential improvement of cardio-renal outcomes in diabetic patients by reducing proteinuria

    Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects?

    Get PDF
    Abstract: Cardiovascular mortality is a major cause of death among in type 2 diabetes (T2DM). Endothelial dysfunction (ED) is a well-known important risk factor for the development of diabetes cardiovascular complications. Therefore, the prevention of diabetic macroangiopathies by preserving endothelial function represents a major therapeutic concern for all National Health Systems. Several complex mechanisms support ED in diabetic patients, frequently cross-talking each other: uncoupling of eNOS with impaired endothelium-dependent vascular response, increased ROS production, mitochondrial dysfunction, activation of polyol pathway, generation of advanced glycation end-products (AGEs), activation of protein kinase C (PKC), endothelial inflammation, endothelial apoptosis and senescence, and dysregulation of microRNAs (miRNAs). Metformin is a milestone in T2DM treatment. To date, according to most recent EASD/ADA guidelines, it still represents the first-choice drug in these patients. Intriguingly, several extraglycemic effects of metformin have been recently observed, among which large preclinical and clinical evidence support metformin’s efficacy against ED in T2DM. Metformin seems effective thanks to its favorable action on all the aforementioned pathophysiological ED mechanisms. AMPK pharmacological activation plays a key role, with metformin inhibiting inflammation and improving ED. Therefore, aim of this review is to assess metformin’s beneficial effects on endothelial dysfunction in T2DM, which could preempt development of atherosclerosis

    Non-Alcoholic Fatty Liver Disease: From Pathogenesis to Clinical Impact

    No full text
    Non-Alcoholic Fatty Liver Disease (NAFLD) is caused by the accumulation of fat in over 5% of hepatocytes in the absence of alcohol consumption. NAFLD is considered the hepatic manifestation of metabolic syndrome (MS). Recently, an expert consensus suggested as more appropriate the term MAFLD (metabolic-associated fatty liver disease). Insulin resistance (IR) plays a key role in the development of NAFLD, as it causes an increase in hepatic lipogenesis and an inhibition of adipose tissue lipolysis. Beyond the imbalance of adipokine levels, the increase in the mass of visceral adipose tissue also determines an increase in free fatty acid (FFA) levels. In turn, an excess of FFA is able to determine IR through the inhibition of the post-receptor insulin signal. Adipocytes secrete chemokines, which are able to enroll macrophages inside the adipose tissue, responsible, in turn, for the increased levels of TNF-α. The latter, as well as resistin and other pro-inflammatory cytokines such as IL-6, enhances insulin resistance and correlates with endothelial dysfunction and an increased cardiovascular (CV) risk. In this review, the role of diet, intestinal microbiota, genetic and epigenetic factors, low-degree chronic systemic inflammation, mitochondrial dysfunction, and endoplasmic reticulum stress on NAFLD have been addressed. Finally, the clinical impact of NAFLD on cardiovascular and renal outcomes, and its direct link with type 2 diabetes have been discussed

    Atrial Fibrillation and Stroke. A Review on the Use of Vitamin K Antagonists and Novel Oral Anticoagulants

    No full text
    Atrial fibrillation (AF) is the most common arrhythmia, ranging from 0.1% in patients <55 years to >9% in octogenarian patients. One important issue is represented by the 5-fold increased ischemic stroke risk in AF patients. Hence, the role of anticoagulation is central. Until a few years ago, vitamin K antagonists (VKAs) and low molecular weight heparin represented the only option to prevent thromboembolisms, though with risks. Novel oral anticoagulants (NOACs) have radically changed the management of AF patients, improving both life expectancy and life quality. This review aims to summarize the most recent literature on the use of VKAs and NOACs in AF, in light of the new findings

    Polypharmacy and major adverse events in atrial fibrillation

    No full text
    Atrial fibrillation (AF) is the most common arrhythmia, ranging from 0.1% in patients <55 years to >9% in octogenarian patients. Polypharmacotherapy is crucial in AF management, as well as in many of the concomitant comorbidities, such as hypertension, heart failure, coronary artery disease and diabetes. However, polypharmacy represents a major concern due to the associated risks of adverse events onset, with an increased risk of all-cause mortality and cardiovascular mortality. In this paper we commented data reported by Tsagkaris et al. comparing them with previous reports

    Metformin for Type 2 Diabetes

    No full text
    corecore