36 research outputs found

    Observation of soft X-rays from cosmic sources

    Get PDF
    A binary X-ray source, an extended extragalactic X-ray source and several nearby stars were surveyed for X-ray emission. The energy spectrum and time structure of X-ray flux from the binary source, Her X-l, was investigated in the range from 0.15 to 6 KeV. This source was observed at a binary phase of 0.18 with the system near elongation normal to the line of sight. Intense pulsations were observed in optical emission lines near this binary phase. The spectrum and angular distribution of X-ray emission from the X-ray source in the Virgo Cluster of Galaxies, near M 87, was also observed. In addition, the stars Alpha Leo, Zeta Her, and Epsilon Vir were investigated. Epsilon Aur and Alpha Aur were also scanned. These stars were studied since there is increasing evidence that such objects may be transient sources of soft X-rays

    A Wolter type I LAMAR

    Get PDF
    Observational objectives for the LAMAR and their influence on the instrument design are discussed. It is concluded that the most important design parameter is the angular resolution of the LAMAR modules since it so strongly influences sensitivity, optical identifications, source confusion, spectral resolution for objective gratings and the ability to resolve small extended sources. A high resolution Wolter Type I LAMAR module is described, its hardware status discussed, and the performance of a LAMAR observatory presented. A promising technique for enhancing the reflectivity of Wolter Type I X-ray optics in a selected bandpass at high energy has been investigated and the performance of the LAMAR module, utilizing this method, has been calculated

    Experimental study of spectral and spatial distribution of solar X-rays

    Get PDF
    The study of the physical conditions within the solar corona and the development of instrumentation and technical expertise necessary for advanced studies of solar X-ray emission are reported. Details are given on the Aerobee-borne-X-ray spectrometer/monochromator and also on the observing program. Preliminary discussions of some results are presented and include studies of helium-like line emission, mapping O(VII) and Ne(IX) lines, survey of O(VII) and Ne(IX) lines, study of plage regions and small flares, and analysis of line emission from individual active regions. It is concluded that the use of large-area collimated Bragg spectrometers to scan narrow wavelength intervals and the capability of the SPARCS pointing control to execute a complex observing program are established

    Rocket study of the X-ray background

    Get PDF
    The X-ray optical detection system flown on Aerobee 17.08 is described in detail, and the preliminary results of the 24 June 1971 flight are discussed. The optical design, fabrication and parabolic nature of the mirrors, effective aperture of mirror array, and X-ray detectors are considered. Preliminary analysis of data from the flight confirms the extended nature and complex structure of the X-ray source in Virgo. A core of X-ray emission is indicated which is approximately 0.5 deg in diameter and surrounded by an emitting region at least 2 deg across. The Virgo source spectrum is observed to have few low energy photons

    EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    Get PDF
    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments

    EIT Observations of the Extreme Ultraviolet Sun

    Full text link
    The Extreme Ultraviolet Imaging Telescope (EIT) on board the SOHO spacecraft has been operational since 2 January 1996. EIT observes the Sun over a 45 x 45 arc min field of view in four emission line groups: Feix, x, Fexii, Fexv, and Heii. A post-launch determination of the instrument flatfield, the instrument scattering function, and the instrument aging were necessary for the reduction and analysis of the data. The observed structures and their evolution in each of the four EUV bandpasses are characteristic of the peak emission temperature of the line(s) chosen for that bandpass. Reports on the initial results of a variety of analysis projects demonstrate the range of investigations now underway: EIT provides new observations of the corona in the temperature range of 1 to 2 MK. Temperature studies of the large-scale coronal features extend previous coronagraph work with low-noise temperature maps. Temperatures of radial, extended, plume-like structures in both the polar coronal hole and in a low latitude decaying active region were found to be cooler than the surrounding material. Active region loops were investigated in detail and found to be isothermal for the low loops but hottest at the loop tops for the large loops

    Performance Of The Engineering Model X-Ray Mirror Of The Solar X-Ray Imager (Sxi) For Future Goes Missions

    No full text
    We have measured the x-ray imaging performance of a grazing incidence telescope mirror, the HT #17, employing a hyperboloid-hyperboloid design. This design provides improved wide-field imaging compared to an optimally defocused Wolter Type I mirror. This improvement will be advantageous for future Geostationary Operational Environmental Satellite (GOES) missions that will provide full disk images of the sun with the Solar X-ray Imager (SXI). The x-ray measurements were made in the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center and the results are presented here. © 2000 SPIE
    corecore