156 research outputs found

    Lentikat®-based Biocatalysts: Effective Tools for Inulin Hydrolysis

    Get PDF
    A commercial inulinase preparation from Aspergillus niger was immobilized into polyvinyl alcohol hydrogel lenticular particles (Lentikats®) and into hemispheric-shaped capsules, both based on the use of LentiKat® liquid. The characterization of the resulting biocatalysts, aiming at inulin hydrolysis to fructose, was performed, and the two methods of immobilization were compared. Temperature and pH profiles, as well as kinetic constants were determined, for both free and immobilized enzyme preparations. A broader-shaped curve was observed for the pH-activity profile when immobilized forms were compared to the free form. The apparent KM of inulinase increased roughly 2-fold upon immobilization in either form of the support particles, suggesting diffusion limitations of inulin inside the gel. Long-term operation with immobilized enzymes proved unfeasible above 55 °C, due to the lack of mechanical stability of the supports tested. When the temperature of incubation was lowered to 50 °C, the hemispheric form of the immobilized enzyme displayed considerable long-term operational stability, since it allowed 20 repeated, consecutive batch-mode runs, with a final decay in product yield of 20 %. When inulinase immobilized in Lentikats® particles was used, the final decay in product yield was roughly 70 %

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe

    Aesthetics in Ethics: Narrative and Theoretical Dimensions of Moral Evaluation

    No full text

    "Salute e cure mediche: quale etica?"

    No full text
    • …
    corecore