11 research outputs found

    Carbon Nanotube Patterning on a Metal Substrate

    Get PDF
    A CNT electron source, a method of manufacturing a CNT electron source, and a solar cell utilizing a CNT patterned sculptured substrate are disclosed. Embodiments utilize a metal substrate which enables CNTs to be grown directly from the substrate. An inhibitor may be applied to the metal substrate to inhibit growth of CNTs from the metal substrate. The inhibitor may be precisely applied to the metal substrate in any pattern, thereby enabling the positioning of the CNT groupings to be more precisely controlled. The surface roughness of the metal substrate may be varied to control the density of the CNTs within each CNT grouping. Further, an absorber layer and an acceptor layer may be applied to the CNT electron source to form a solar cell, where a voltage potential may be generated between the acceptor layer and the metal substrate in response to sunlight exposure

    Carbon Nanotube Electron Gun

    Get PDF
    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun

    Carbon nanotube electron gun

    Get PDF
    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun

    Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope

    Get PDF
    The future development of polymer composite materials with nanotubes or nanoscale fibers requires the ability to understand and improve the interfacial bonding at the nanotube–polymer matrix interface. In recent work [Strus MC, Zalamea L, Raman A, Pipes RB, Nguyen CV, Stach EA. Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett 2008;8(2):544–50], it has been shown that a new mode in the Atomic Force Microscope (AFM), peeling force spectroscopy, can be used to understand the adhesive mechanics of carbon nanotubes peeled from a surface. In the present work, we demonstrate how AFM peeling force spectroscopy can be used to distinguish between elastic and interfacial components during a nanoscale peel test, thus enabling the direct measurement of interfacial energy between an individual nanotube or nanofiber and a given material surface. The proposed method provides a convenient experimental framework to quickly screen different combinations of polymers and functionalized nanotubes for optimal interfacial strength

    Investigation of the carbon nanotube AFM tip contacts: free sliding versus pinned contact

    No full text
    Mechanical response of carbon nanotube atomic force microscope probes are investigated using a thermal noise forcing. Thermal noise spectra are able to investigate mechanical behaviors that cannot be studied using classical atomic force microscope modes. Experimental results show that the carbon nanotube contacts can be classified in two categories: the free sliding and pinned cases. The pinned contact case requires the description of the cantilever flexural vibrations with support spring-coupled cantilever boundary conditions. Our experimental results show that carbon nanotubes exhibit different contact behaviors with a surface, and in turn different mechanical responses

    Investigation of the carbon nanotube AFM tip contacts: free sliding versus pinned contact

    No full text
    Mechanical response of carbon nanotube atomic force microscope probes are investigated using a thermal noise forcing. Thermal noise spectra are able to investigate mechanical behaviors that cannot be studied using classical atomic force microscope modes. Experimental results show that the carbon nanotube contacts can be classified in two categories: the free sliding and pinned cases. The pinned contact case requires the description of the cantilever flexural vibrations with support spring-coupled cantilever boundary conditions. Our experimental results show that carbon nanotubes exhibit different contact behaviors with a surface, and in turn different mechanical responses

    Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method

    No full text
    Synthesis of carbon nanotubes (CNTs) was carried out using methane as a carbon source via the chemical vapor deposition (CVD) method. A thin stainless-steel foil was used as catalyst for CNT growth. Our results revealed that pretreatment step of the stainless-steel foil as a catalyst plays an important role in CNT formation. In our experiments, a catalyst pretreatment temperature of 850 °C or 950 °C was found to facilitate the creation of Fe- and Cr-rich particles are active sites on the foil surface, leading to CNT formation. It is noted that the size of metallic particles after pretreatment is closely related to the diameter of the synthesized CNTs. It is interesting that a shorter catalyst pretreatment brings the growth of semiconducting typed CNTs while a longer pretreatment creates metallic CNTs. This finding might lead to a process for improving the quality of CNTs grown on steel foil as catalyst

    Functionalization of Carbon Nanotubes using Atomic Hydrogen

    No full text
    We have investigated the irradiation of multi walled and single walled carbon nanotubes (SWNTs) with atomic hydrogen. After irradiating the SWNT sample, a band at 2940/cm (3.4 microns) that is characteristic of the C-H stretching mode is observed using Fourier transform infrared (FTIR) spectroscopy. Additional confirmation of SWNT functionalization is tested by irradiating with atomic deuterium. A weak band in the region 1940/cm (5.2 micron) to 2450/cm (4.1 micron) corresponding to C-D stretching mode is also observed in the FTIR spectrum. This technique provides a clean gas phase process for the functionalization of SWNTs, which could lead to further chemical manipulation and/or the tuning of the electronic properties of SWNTs for nanodevice applications
    corecore