1,800 research outputs found

    Technicolor and Beyond: Unification in Theory Space

    Get PDF
    The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount at the enhancement of the anomalous dimension of the mass of the techniquarks allowing to decouple the Flavor Changing Neutral Currents problem from the one of the generation of the top mass. Precision data constraints are reviewed focussing on the latest crucial observation that the S-parameter can be computed exactly near the upper end of the conformal window (Conformal S-parameter) with relevant consequences on the selection of nature's next strong force. We will then introduce the Minimal Walking Technicolor (MWT) models. In the second part of this review we consider the interesting possibility to marry supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle physiscs. A surprising result is that a minimal (in terms of the smallest number of fields) supersymmetrization of the MWT model leads to the maximal supersymmetry in four dimensions, i.e. N=4 SYM.Comment: Extended version of the PASCOS10 proceedings for the Plenary Tal

    Messenger RNA coding for only the alpha subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes

    Get PDF
    Several cDNA clones coding for the high molecular weight (alpha) subunit of the voltage-sensitive Na channel have been selected by immunoscreening a rat brain cDNA library constructed in the expression vector lambda gt11. As will be reported elsewhere, the amino acid sequence translated from the DNA sequence shows considerable homology to that reported for the Electrophorus electricus electroplax Na channel. Several of the cDNA inserts hybridized with a low-abundance 9-kilobase RNA species from rat brain, muscle, and heart. Sucrose-gradient fractionation of rat brain poly(A) RNA yielded a high molecular weight fraction containing this mRNA, which resulted in functional Na channels when injected into oocytes. This fraction contained undetectable amounts of low molecular weight RNA. The high molecular weight Na channel RNA was selected from rat brain poly(A) RNA by hybridization to a single-strand antisense cDNA clone. Translation of this RNA in Xenopus oocytes resulted in the appearance of tetrodotoxin-sensitive voltage-sensitive Na channels in the oocyte membrane. These results demonstrate that mRNA encoding the alpha subunit of the rat brain Na channel, in the absence of any beta-subunit mRNA, is sufficient for translation to give functional channels in oocytes

    Quantum chromodynamics with advanced computing

    Get PDF
    We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.Comment: 17 pp. Featured presentation at Scientific Discovery with Advanced Computing, July 13-17, Seattl

    Precision Upsilon Spectroscopy from Nonrelativistic Lattice QCD

    Full text link
    The spectrum of the Upsilon system is investigated using the Nonrelativistic Lattice QCD approach to heavy quarks and ignoring light quark vacuum polarization. We find good agreement with experiment for the Upsilon(1S), Upsilon(2S), Upsilon(3S) and for the center of mass and fine structure of the chi_b states. The lattice calculations predict b-bbar D-states with center of mass at (10.20 +/- 0.07 +/- 0.03)GeV. Fitting procedures aimed at extracting both ground and excited state energies are developed. We calculate a nonperturbative dispersion mass for the Upsilon(1S) and compare with tadpole-improved lattice perturbation theory.Comment: 8 pages, latex, SCRI-94-57, OHSTPY-HEP-T-94-00

    Grand-Canonical Ensemble of Random Surfaces with Four Species of Ising Spins

    Full text link
    The grand-canonical ensemble of dynamically triangulated surfaces coupled to four species of Ising spins (c=2) is simulated on a computer. The effective string susceptibility exponent for lattices with up to 1000 vertices is found to be γ=0.195(58)\gamma = - 0.195(58). A specific scenario for c>1c > 1 models is conjectured.Comment: LaTeX, 11 pages + 1 postscript figure appended, preprint LPTHE-Orsay 94/1

    Introduced birds in urban remnant vegetation : does remnant size really matter?

    Get PDF
    Introduced birds are a pervasive and dominant element of urban ecosystems. We examined the richness and relative abundance of introduced bird species in small (1&ndash;5 ha) medium (6&ndash;15 ha) and large (&gt;15 ha) remnants of native vegetation within an urban matrix. Transects were surveyed during breeding and non-breeding seasons. There was a significant relationship between introduced species richness and remnant size with larger remnants supporting more introduced species. There was no significant difference in relative abundance of introduced species in remnants of different sizes. Introduced species, as a proportion of the relative abundance of the total avifauna (native and introduced species), did not vary significantly between remnants of differing sizes. There were significant differences in the composition of introduced bird species between the different remnant sizes, with large remnants supporting significantly different assemblages than medium and small remnants. Other variables also have substantial effects on the abundance of introduced bird species. The lack of significant differences in abundance between remnant sizes suggests they were all equally susceptible to invasion. No patches in the urban matrix are likely to be unaffected by introduced species. The effective long-term control of introduced bird species is difficult and resources may be better spent managing habitat in a way which renders it less suitable for introduced species (e.g. reducing areas of disturbed ground and weed dominated areas).<br /

    Discrete approaches to quantum gravity in four dimensions

    Get PDF
    The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation, quantum Regge calculus, and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the author welcomes any comments and suggestion

    Development of a lightweight camera for high altitude platform systems

    Get PDF
    We describe the development of a lightweight, high-resolution surveillance camera for deployment on high altitude platform systems. The instrument is designed to operate at an altitude of ∼20 km and has an expected ground resolution of better than 120 mm with an appropriate sensor. While designed specifically for imaging at visible wavelengths, it is shown that the design is capable of diffraction-limited imaging at NIR and SWIR wavelengths up to 2.5 μm. We have combined a range of materials from aluminum and titanium alloys through to carbon fiber reinforced plastic to produce an instrument with structural components that match the thermal expansion of the optical glasses used. The use of these materials has resulted in an instrument that weighs <2 kg, including a sensor package, and is designed to weigh <3 kg once integrated with an enclosure and actuated gimbal. The successful testing of two prototype systems is described, including several design outcomes from the program intended for implementation in advance of flight trials

    Z_2-Regge versus Standard Regge Calculus in two dimensions

    Get PDF
    We consider two versions of quantum Regge calculus. The Standard Regge Calculus where the quadratic link lengths of the simplicial manifold vary continuously and the Z_2-Regge Model where they are restricted to two possible values. The goal is to determine whether the computationally more easily accessible Z_2 model still retains the universal characteristics of standard Regge theory in two dimensions. In order to compare observables such as average curvature or Liouville field susceptibility, we use in both models the same functional integration measure, which is chosen to render the Z_2-Regge Model particularly simple. Expectation values are computed numerically and agree qualitatively for positive bare couplings. The phase transition within the Z_2-Regge Model is analyzed by mean-field theory.Comment: 21 pages, 16 ps-figures, to be published in Phys. Rev.

    Large N and Bosonization in Three Dimensions

    Full text link
    Bosonization is normally thought of as a purely two-dimensional phenomenon, and generic field theories with fermions in D>2 are not expected be describable by local bosonic actions, except in some special cases. We point out that 3D SU(N) gauge theories on R^{1,1} x S^{1}_{L} with adjoint fermions can be bosonized in the large N limit. The key feature of such theories is that they enjoy large N volume independence for arbitrary circle size L. A consequence of this is a large N equivalence between these 3D gauge theories and certain 2D gauge theories, which matches a set of correlation functions in the 3D theories to corresponding observables in the 2D theories. As an example, we focus on a 3D SU(N) gauge theory with one flavor of adjoint Majorana fermions and derive the large-N equivalent 2D gauge theory. The extra dimension is encoded in the color degrees of freedom of the 2D theory. We then apply the technique of non-Abelian bosonization to the 2D theory to obtain an equivalent local theory written purely in terms of bosonic variables. Hence the bosonized version of the large N three-dimensional theory turns out to live in two dimensions.Comment: 30 pages, 2 tables. v2 minor revisions, references adde
    corecore