96 research outputs found

    Monte Carlo Renormalization of 2d Simplicial Quantum Gravity Coupled to Gaussian Matter

    Get PDF
    We extend a recently proposed real-space renormalization group scheme for dynamical triangulations to situations where the lattice is coupled to continuous scalar fields. Using Monte Carlo simulations in combination with a linear, stochastic blocking scheme for the scalar fields we are able to determine the leading eigenvalues of the stability matrix with good accuracy both for c = 1 and c = 10 theories.Comment: 17 pages, 7 figure

    Numerical Study of c>1 Matter Coupled to Quantum Gravity

    Full text link
    We present the results of a numerical simulation aimed at understanding the nature of the `c = 1 barrier' in two dimensional quantum gravity. We study multiple Ising models living on dynamical ϕ3\phi^3 graphs and analyse the behaviour of moments of the graph loop distribution. We notice a universality at work as the average properties of typical graphs from the ensemble are determined only by the central charge. We further argue that the qualitative nature of these results can be understood from considering the effect of fluctuations about a mean field solution in the Ising sector.Comment: 12 page

    Black hole thermodynamics from simulations of lattice Yang-Mills theory

    Get PDF
    We report on lattice simulations of 16 supercharge SU(N) Yang-Mills quantum mechanics in the 't Hooft limit. Maldacena duality conjectures that in this limit the theory is dual to IIA string theory, and in particular that the behavior of the thermal theory at low temperature is equivalent to that of certain black holes in IIA supergravity. Our simulations probe the low temperature regime for N <= 5 and the intermediate and high temperature regimes for N <= 12. We observe 't Hooft scaling and at low temperatures our results are consistent with the dual black hole prediction. The intermediate temperature range is dual to the Horowitz-Polchinski correspondence region, and our results are consistent with smooth behavior there. We include the Pfaffian phase arising from the fermions in our calculations where appropriate.Comment: 4 pages, 4 figure

    Non-Perturbative Renormalization Group Flows in Two-Dimensional Quantum Gravity

    Get PDF
    Recently a block spin renormalization group approach was proposed for the dynamical triangulation formulation of two-dimensional quantum gravity. We use this approach to examine non-perturbatively a particular class of higher derivative actions for pure gravity.Comment: 17 page

    First results from simulations of supersymmetric lattices

    Get PDF
    We conduct the first numerical simulations of lattice theories with exact supersymmetry arising from the orbifold constructions of \cite{Cohen:2003xe,Cohen:2003qw,Kaplan:2005ta}. We consider the \cQ=4 theory in D=0,2D=0,2 dimensions and the \cQ=16 theory in D=0,2,4D=0,2,4 dimensions. We show that the U(N) theories do not possess vacua which are stable non-perturbatively, but that this problem can be circumvented after truncation to SU(N). We measure the distribution of scalar field eigenvalues, the spectrum of the fermion operator and the phase of the Pfaffian arising after integration over the fermions. We monitor supersymmetry breaking effects by measuring a simple Ward identity. Our results indicate that simulations of N=4{\cal N}=4 super Yang-Mills may be achievable in the near future.Comment: 25 pages, 14 figures, 9 tables. 3 references adde

    Topological gravity on the lattice

    Get PDF
    In this paper we show that a particular twist of N=4\mathcal{N}=4 super Yang-Mills in three dimensions with gauge group SU(2) possesses a set of classical vacua corresponding to the space of flat connections of the {\it complexified} gauge group SL(2,C)SL(2,C). The theory also contains a set of topological observables corresponding to Wilson loops wrapping non-trivial cycles of the base manifold. This moduli space and set of topological observables is shared with the Chern Simons formulation of three dimensional gravity and we hence conjecture that the Yang-Mills theory gives an equivalent description of the gravitational theory. Unlike the Chern Simons formulation the twisted Yang-Mills theory possesses a supersymmetric and gauge invariant lattice construction which then provides a possible non-perturbative definition of three dimensional gravity.Comment: 10 page

    A real-space renormalization group for random surfaces

    Get PDF
    We propose a new real-space renormalization group transformation for dynamical triangulations. It is shown to preserve geometrical exponents such as the string susceptibility and Hausdorff dimension. We furthermore show evidence for a fixed point structure both in pure gravity and gravity coupled to a critical Ising system. In the latter case we are able to extract estimates for the gravitationally dressed exponents which agree to within 2-3% of the KPZ formula

    Phase Structure of Dynamical Triangulation Models in Three Dimensions

    Get PDF
    The dynamical triangulation model of three-dimensional quantum gravity is shown to have a line of transitions in an expanded phase diagram which includes a coupling mu to the order of the vertices. Monte Carlo renormalization group and finite size scaling techniques are used to locate and characterize this line. Our results indicate that for mu < mu1 ~ -1.0 the model is always in a crumpled phase independent of the value of the curvature coupling. For mu < 0 the results are in agreement with an approximate mean field treatment. We find evidence that this line corresponds to first order transitions extending to positive mu. However, the behavior appears to change for mu > mu2 ~ 2-4. The simplest scenario that is consistent with the data is the existence of a critical end point

    Minimal Dynamical Triangulations of Random Surfaces

    Get PDF
    We introduce and investigate numerically a minimal class of dynamical triangulations of two-dimensional gravity on the sphere in which only vertices of order five, six or seven are permitted. We show firstly that this restriction of the local coordination number, or equivalently intrinsic scalar curvature, leaves intact the fractal structure characteristic of generic dynamically triangulated random surfaces. Furthermore the Ising model coupled to minimal two-dimensional gravity still possesses a continuous phase transition. The critical exponents of this transition correspond to the usual KPZ exponents associated with coupling a central charge c=1/2 model to two-dimensional gravity.Comment: Latex, 9 pages, 3 figures, Published versio
    corecore