175 research outputs found

    Molecular and supramolecular chirality: R2PI spectroscopy as a tool for the gas-phase recognition of chiral systems of biological interest.

    Get PDF
    A review. In life sciences, diastereomeric chiral mol./chiral receptor complexes are held together by a different combination of intermol. forces and are therefore endowed with different stability and reactivity. Detn. of these forces, which are normally affected in the condensed phase by solvent and supramol. interactions, can be accomplished through the generation of diastereomeric complexes in the isolated state and their spectroscopic investigation. This review presents a detailed discussion of the mass resolved Resonant Two Photon Ionization (R2PI-TOF) technique in supersonic beams and introduces an overview of various other technologies currently available for the spectroscopic study of gas phase chiral mols. and supramol. systems. It reports case studies primarily from the authors' recent work using R2PI-TOF methodol. for chiral recognition in clusters contg. mols. of biol. interest. The measurement of absorption spectra, ionization and fragmentation thresholds of diastereomeric clusters by this technique allow the detn. of the nature of the intrinsic interactions, which control their formation and which affect their stability and reactivity

    Excited state dynamics of Zn–salophen complexes

    Get PDF
    Zn-salophen complexes are a promising class of fluorescent chemosensors for nucleotides and nucleic acids. We have investigated, by means of steady state UV-Vis, ultrafast transient absorption, fluorescence emission and time dependent density functional theory (TD-DFT) the behavior of the excited states of a salicylidene tetradentate Schiff base (Sal), its Zn(II) coordination compound (Zn-Sal) and the effect of the interaction between Zn-Sal and adenosine diphosphate (ADP). TD-DFT shows that the deactivation of the excited state of Sal occurs through torsional motion, due to its rotatable bonds and twistable angles. Complexation with Zn(II) causes rigidity so that the geometry changes in the excited states with respect to the ground state structure are minimal. By addition of ADP to a freshly prepared Zn-Sal ethanol solution, a longer relaxation constant, in comparison to Zn-Sal, was measured, indicative of the interaction between Zn-Sal and ADP. After a few days, the Zn-Sal-ADP solution displayed the same static and dynamic behavior of a solution containing only the Sal ligand, demonstrating that the coordination of the ADP anion to Zn(II)leads to the demetallation of the Sal ligand. Fluorescence measurements also revealed an enhanced fluorescence at 375 nm following the addition of ADP to the solution, caused by the presence of 2,3-diamino naphthalene that is formed by demetallation and partial decomposition of the Sal ligand. The efficient fluorescence of this species at 375 nm could be selectively detected and used as a probe for the detection of ADP in solution.[GRAPHICS]

    Solvent free interactions in contact pairs of molecules of biological interest: Laser spectroscopic and electrospray mass spectrometric studies

    Get PDF
    A laser spectroscopic and mass spectrometric study of ionic and molecular clusters of biological interest is reported. The molecules of interest and their aggregates were generated in a supersonic beam and analyzed by mass resolved resonant two photon absorption and ionization (R2PI) and by collision induced mass spectrometry (CID-MS). The absence of the solvent allows to study these systems in the isolated state free of undesired solvent effects which may level off the differences in their properties. The gas phase results have been compared to theoretical estimates of the structure and stability of the systems under investigation

    Production of clusters and thin films of nitrides, oxides and carbides by pulsed laser ablation and deposition

    Get PDF
    A short introduction on the principles of laser-matter interaction, material evaporation, plume formation, its reactivity with suitable gases and finally deposition are here illustrated. Experiments by mass spectrometry of formation of clusters, precursors of thin films and nanoparticles of oxides, nitrides and carbides by pulsed laser ablation (PLA) are reported. Pulsed laser ablation of targets combined with an intense atomic source produced by radiofrequency (RF), are discussed in terms of generating chemical reactions or supplying the loss of volatile components

    Influence of diameter on temperature dynamics of hot carriers in photoexcited GaAsP nanowires

    Get PDF
    Semiconductor nanowires (NWs) often present different structural and opto-electronic properties than their thin film counterparts. The thinner they are, the larger these differences are. Here, we present femtosecond transient absorbance measurements on GaAs0.8P0.2 NWs of two different diameters, 36 and 51 nm. The results show that thinner NWs sustain a higher carrier temperature for longer times than thicker NWs. This observation suggests that, in thinner NWs, the buildup of a hot-phonon bottleneck is easier than in thicker NWs because of the increased phonon scattering at the NW sidewalls, which facilitates the buildup of a large phonon density. Moreover, the important observation that the carrier temperature in thin NWs is higher than in thick NWs already at the beginning of the hot carrier regime suggests that the phonon-mediated scattering processes in the nonthermal regime play a major role at least for the carrier densities investigated here (8 × 1018 to 4 × 1019 cm–3). Our results also suggest that the phonon scattering at crystal defects is negligible compared with the phonon scattering at the NW sidewalls

    Chiral recognition between 1-(4-fluorophenyl)ethanol and 2-butanol: higher binding energy of homochiral complexes in the gas phase

    Get PDF
    Diastereomeric adducts between (S)-1-(4-fluorophenyl)-ethanol and R and S 2-butanol, formed by supersonic expansion, were studied by a combination of mass selected resonant two-photon ionization-spectroscopy and IR depletion spectroscopy. Chiral recognition is evidenced by the specific spectroscopic signatures of the S1 S0 electronic transition as well as different frequencies and intensities of the OH stretch vibrational mode in the ground state. D-DFT calcns. were performed to assist in the anal. of the spectra and the detn. of the structures. The homochiral and heterochiral complexes show slight structural differences, in particular in the interaction of the alkyl groups of 2-butanol with the arom. ring. The homochiral [FESBS] complex is more stable than the heterochiral [FESBR] diastereomer in both the ground and excited states. The binding energy difference was evaluated to be >0.60 kcal mol-1

    Ultrafast Formation of Small Polarons and the Optical Gap in CeO2

    Get PDF
    The ultrafast dynamics of excited states in cerium oxide are investigated to access the early moments of polaron formation, which can influence the photocatalytic functionality of the material. UV transient absorbance spectra of photoexcited CeO2 exhibit a bleaching of the band edge absorbance induced by the pump and a photoinduced absorbance feature assigned to Ce 4f → Ce 5d transitions. A blue shift of the spectral response of the photoinduced absorbance signal in the first picosecond after the pump excitation is attributed to the dynamical formation of small polarons with a characteristic time of 330 fs. A further important result of our work is that the combined use of steady-state and ultrafast transient absorption allows us to propose a revised value for the optical gap for ceria (Eog = 4 eV), significantly larger than usually reported

    Injecting Electrons into CeO2 via Photoexcitation of Embedded Au Nanoparticles

    Get PDF
    The electron injection efficiency and the steady state absorptance at different photon energies for a composite system made of Au NPs embedded in a cerium oxide matrix are reported. Cerium oxide can be coupled with plasmonic nanoparticles (NPs) to improve its catalytic properties by visible-light absorption. The present work is a study of the ultrafast dynamics of excited states induced by ultraviolet and visible-light excitation in Au NPs combined with cerium oxide, aimed at understanding the excitation pathways. The data, obtained by femtosecond transient absorption spectroscopy, show that the excitation of localized surface plasmon resonances (LSPRs) in the Au NPs leads to an ultrafast injection of electrons into the empty 4f states of the surrounding cerium oxide. Within the first few picoseconds, the injected electrons couple with the lattice distortion forming a polaronic excited state, with similar properties to that formed after direct band gap excitation of the oxide. At sub-picosecond delay times, we observed relevant differences in the energetics and the time dynamics as compared to the case of band gap excitation of the oxide. Using different pump energies across the LSPR-related absorption band, the efficiency of the electron injection from the NPs into the oxide was found to be rather high, with a maximum above 30%. The injection efficiency has a different trend in energy as compared to the LSPR-related static optical absorptance, showing a significant decrease in low energies. This behavior is explained considering different deexcitation pathways with variable weight across the LSPR band. The results are important for the design of materials with high overall solar catalytic efficiency
    • …
    corecore