27 research outputs found

    Use of a Natural Isotopic Signature in Otoliths to Evaluate Scale-Based Age Determination for American Shad

    Get PDF
    We used delta O-18 signatures in otoliths as a natural tag for hatch year to evaluate the scale-based age determination method used for adult American shad Alosa sapidissima in the York River, Virginia. Juveniles of the 2002 year-class exhibited high delta O-18 values in otolith cores that identified adult members of the cohort as they returned to spawn. Recruitment of the 2002 cohort was monitored for three consecutive years, identifying age-4, age-5, and age-6 individuals of the York River stock. The scale-based age determination method was not suitable for aging age-4, age-5, or age-6 American shad in the York River. On average, 50% of the individuals from the 2002 year-class were aged incorrectly using the scale-based method. These results suggest that the standard age determination method used for American shad is not applicable to the York River stock. Scientists and managers should use caution when applying scale-based age estimates to stock assessments for American shad in the York River and throughout their range, as the applicability of the scale-based method likely varies for each stock. This study highlights a promising new direction for otolith geochemistry to provide cohort-specific markers, and it identifies several factors that should be considered when applying the technique in the future

    Migratory behavior of American shad in the York River, Virginia, with implications for estimating in-river exploitation from tag recovery data

    No full text
    Tagging of American shad Alosa sapidissima may alter their migratory behavior, causing some tagged individuals to cease or delay the spawning run. In a tag recovery study designed to assess fishery impacts, this altered behavior would reduce the number of tagged fish available to the target fishery and would bias estimates of exploitation and fishing mortality rates. To investigate this possibility, we fitted 29 prespawning adults with acoustic tags and released the fish into the middle reaches of the York River, Virginia. Movements of individuals were remotely monitored at three hydrophone stations: (1) 7 river kilometers (rkm) downriver of the release site; (2) on the Mattaponi River, 48 rkm upriver of the release location; and (3) on the Pamunkey River, 56 rkm upriver of the release location. Almost half of the fish were apparently affected by capture, handling, and tagging, as they either abandoned their migration or delayed their upstream movements. The movements of some fish appeared to be unaffected by capture; these fish were not detected at the downriver station and were detected on the spawning grounds 2-5 d after release. Eighteen fish remained on the spawning grounds for 17-51 d (average = 34.4 d) and were last detected at the downriver location, presumably during their seaward migration. Of the 26 tagged fish that migrated to either tributary after release, 15 originally selected spawning grounds on the Mattaponi River and I I selected the Pamunkey River. One fish occupied both tributaries for several weeks each, suggesting possible spawning at both locations. We conclude that tagging protocols designed to measure the impacts of fishing on American shad should include telemetry to assess altered migratory behavio
    corecore