17 research outputs found

    Impact of Native Grasses and Cheatgrass (Bromus tectorum) on Great Basin Forb Seedling Growth

    No full text
    Re-establishing native communities that resist exotic weed invasion and provide diverse habitat for wildlife are high priorities for restoration in sagebrush ecosystems. Native forbs are an important component of healthy rangelands in this system, but they are rarely included in seedings. Understanding competitive interactions between forb and grass seedlings is required to devise seeding strategies that can enhance establishment of diverse native species assemblages in degraded sagebrush communities. We conducted a greenhouse experiment to examine seedling biomass and relative growth rate of common native forb species when grown alone or in the presence of a native bunchgrass or an exotic annual grass. Forb species included bigseed biscuitroot (Lomatium macrocarpum [Nutt. ex Torr. A. Gray] J.M. Coult. Rose), sulphur-flower buckwheat (Eriogonum umbellatum Torr.), hoary aster (Machaeranthera canescens [Pursh] Gray), royal penstemon (Penstemon speciosus Douglas ex Lindl.), and Munro’s globemallow (Sphaeralcea munroana [Douglas ex Lindl.] Spach ex Gray); and neighboring grass species included bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey), Sandberg bluegrass (Poa secunda J. Presl); and cheatgrass (Bromus tectorum L.). Forbs and grasses were harvested after 6, 9, or 12 wk of growth for biomass determination and calculation of relative growth rates (RGR) of forbs. Neither bunchgrass reduced biomass of any forb. RGR was reduced for royal penstemon when grown with either native grass and for Munro’s globemallow when grown with bottlebrush squirreltail. Although only assessed qualitatively, forbs with vertically oriented root morphologies exhibited no reduction in RGR when grown with native grasses, compared to forbs with dense lateral branching, similar to the root morphology of native grasses. Biomass of forbs was reduced by 50% to 91% and RGR by 37% to 80% when grown with cheatgrass. Understanding native forb interactions with native grasses and cheatgrass will aid land managers in selecting effective seed mixes and making better use of costly seed.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform August 202

    Establishment of vegetation in mine tailings using A. tumefaciens and organic matter

    Get PDF
    ABSTRACT The landscape legacy of historical metal-mining activity can persist for decades. The most frequent strategies used for the remediation of contaminated soils include: the use of synthetic membranes to isolate contaminants, direct revegetation, or lime amendments. Looking for more cost-effective bioremediation approaches, we performed a set of greenhouse studies to determine what combinations of soil amendments would lead to the best vegetative response, and potentially associated reductions in soil arsenic (As) levels. In our first greenhouse experiment, we planted Leymus cinereus (basin wildrye) in tailings, compared (after 12 weeks) plant growth, and foliar metal concentrations across treatments. Amendments included single or factorial additions of lime, 5% organic matter (+OM), and an arsenic-oxidizing (+oxbact) strain of Agrobacterium tumefaciens (Agtu). For the first experiment, only one level of OM amendment was tested (5%) and a second greenhouse experiment with two levels of OM (1.5% and 5%). In this second experiment, Basin wildrye grown in soils amended with 5% OM generally did better than those grown in soils amended with 1.5% OM and even better in soils amendment with 5% OM + oxbact. These results suggest the combination of OM and Agtu oxbact strain could provide a potentially cost- effective approach to remediating As-contaminated soils

    Accounting for Local Adaptation in Ectomycorrhizas: A Call to Track Geographical Origin of Plants, Fungi, and Soils in Experiments

    No full text
    Local adaptation, the differential success of genotypes in their native versus foreign environments, can influence ecological and evolutionary processes, yet its importance is difficult to estimate because it has not been widely studied, particularly in the context of interspecific interactions. Interactions between ectomycorrhizal (EM) fungi and their host plants could serve as model system for investigations of local adaptation because they are widespread and affect plant responses to both biotic and abiotic selection pressures. Furthermore, because EM fungi cycle nutrients and mediate energy flow into food webs, their local adaptation may be critical in sustaining ecological function. Despite their ecological importance and an extensive literature on their relationships with plants, the vast majority of experiments on EM symbioses fail to report critical information needed to assess local adaptation: the geographic origin of the plant, fungal inocula, and soil substrate used in the experiment. These omissions limit the utility of such studies and restrict our understanding of EM ecology and evolution. Here, we illustrate the potential importance of local adaptation in EM relationships and call for consistent reporting of the geographic origin of plant, soil, and fungi as an important step towards a better understanding of the ecology and evolution of EM symbioses

    Accounting for Local Adaptation in Ectomycorrhizas: A Call to Track Geographical Origin of Plants, Fungi, and Soils in Experiments

    No full text
    Local adaptation, the differential success of genotypes in their native versus foreign environments, can influence ecological and evolutionary processes, yet its importance is difficult to estimate because it has not been widely studied, particularly in the context of interspecific interactions. Interactions between ectomycorrhizal (EM) fungi and their host plants could serve as model system for investigations of local adaptation because they are widespread and affect plant responses to both biotic and abiotic selection pressures. Furthermore, because EM fungi cycle nutrients and mediate energy flow into food webs, their local adaptation may be critical in sustaining ecological function. Despite their ecological importance and an extensive literature on their relationships with plants, the vast majority of experiments on EM symbioses fail to report critical information needed to assess local adaptation: the geographic origin of the plant, fungal inocula, and soil substrate used in the experiment. These omissions limit the utility of such studies and restrict our understanding of EM ecology and evolution. Here, we illustrate the potential importance of local adaptation in EM relationships and call for consistent reporting of the geographic origin of plant, soil, and fungi as an important step towards a better understanding of the ecology and evolution of EM symbioses

    Accounting for Local Adaptation in Ectomycorrhizas: A Call to Track Geographical Origin of Plants, Fungi, and Soils in Experiments

    No full text
    Local adaptation, the differential success of genotypes in their native versus foreign environments, can influence ecological and evolutionary processes, yet its importance is difficult to estimate because it has not been widely studied, particularly in the context of interspecific interactions. Interactions between ectomycorrhizal (EM) fungi and their host plants could serve as model system for investigations of local adaptation because they are widespread and affect plant responses to both biotic and abiotic selection pressures. Furthermore, because EM fungi cycle nutrients and mediate energy flow into food webs, their local adaptation may be critical in sustaining ecological function. Despite their ecological importance and an extensive literature on their relationships with plants, the vast majority of experiments on EM symbioses fail to report critical information needed to assess local adaptation: the geographic origin of the plant, fungal inocula, and soil substrate used in the experiment. These omissions limit the utility of such studies and restrict our understanding of EM ecology and evolution. Here, we illustrate the potential importance of local adaptation in EM relationships and call for consistent reporting of the geographic origin of plant, soil, and fungi as an important step towards a better understanding of the ecology and evolution of EM symbioses

    Accounting for Local Adaptation in Ectomycorrhizas: A Call to Track Geographical Origin of Plants, Fungi, and Soils in Experiments

    No full text
    Local adaptation, the differential success of genotypes in their native versus foreign environments, can influence ecological and evolutionary processes, yet its importance is difficult to estimate because it has not been widely studied, particularly in the context of interspecific interactions. Interactions between ectomycorrhizal (EM) fungi and their host plants could serve as model system for investigations of local adaptation because they are widespread and affect plant responses to both biotic and abiotic selection pressures. Furthermore, because EM fungi cycle nutrients and mediate energy flow into food webs, their local adaptation may be critical in sustaining ecological function. Despite their ecological importance and an extensive literature on their relationships with plants, the vast majority of experiments on EM symbioses fail to report critical information needed to assess local adaptation: the geographic origin of the plant, fungal inocula, and soil substrate used in the experiment. These omissions limit the utility of such studies and restrict our understanding of EM ecology and evolution. Here, we illustrate the potential importance of local adaptation in EM relationships and call for consistent reporting of the geographic origin of plant, soil, and fungi as an important step towards a better understanding of the ecology and evolution of EM symbioses

    Home-Field Advantage? Evidence of Local Adaptation Among Plants, Soil, and Arbuscular Mycorrhizal Fungi through Meta-Analysis

    No full text
    BACKGROUND: Local adaptation, the differential success of genotypes in their native versus foreign environment, arises from various evolutionary processes, but the importance of concurrent abiotic and biotic factors as drivers of local adaptation has only recently been investigated. Local adaptation to biotic interactions may be particularly important for plants, as they associate with microbial symbionts that can significantly affect their fitness and may enable rapid evolution. The arbuscular mycorrhizal (AM) symbiosis is ideal for investigations of local adaptation because it is globally widespread among most plant taxa and can significantly affect plant growth and fitness. Using meta-analysis on 1170 studies (from 139 papers), we investigated the potential for local adaptation to shape plant growth responses to arbuscular mycorrhizal inoculation. RESULTS: The magnitude and direction for mean effect size of mycorrhizal inoculation on host biomass depended on the geographic origin of the soil and symbiotic partners. Sympatric combinations of plants, AM fungi, and soil yielded large increases in host biomass compared to when all three components were allopatric. The origin of either the fungi or the plant relative to the soil was important for explaining the effect of AM inoculation on plant biomass. If plant and soil were sympatric but allopatric to the fungus, the positive effect of AM inoculation was much greater than when all three components were allopatric, suggesting potential local adaptation of the plant to the soil; however, if fungus and soil were sympatric (but allopatric to the plant) the effect of AM inoculation was indistinct from that of any allopatric combinations, indicating maladaptation of the fungus to the soil. CONCLUSIONS: This study underscores the potential to detect local adaptation for mycorrhizal relationships across a broad swath of the literature. Geographic origin of plants relative to the origin of AM fungal communities and soil is important for describing the effect of mycorrhizal inoculation on plant biomass, suggesting that local adaptation represents a powerful factor for the establishment of novel combinations of fungi, plants, and soils. These results highlight the need for subsequent investigations of local adaptation in the mycorrhizal symbiosis and emphasize the importance of routinely considering the origin of plant, soil, and fungal components

    Home-Field Advantage? Evidence of Local Adaptation Among Plants, Soil, and Arbuscular Mycorrhizal Fungi through Meta-Analysis.

    No full text
    BACKGROUND: Local adaptation, the differential success of genotypes in their native versus foreign environment, arises from various evolutionary processes, but the importance of concurrent abiotic and biotic factors as drivers of local adaptation has only recently been investigated. Local adaptation to biotic interactions may be particularly important for plants, as they associate with microbial symbionts that can significantly affect their fitness and may enable rapid evolution. The arbuscular mycorrhizal (AM) symbiosis is ideal for investigations of local adaptation because it is globally widespread among most plant taxa and can significantly affect plant growth and fitness. Using meta-analysis on 1170 studies (from 139 papers), we investigated the potential for local adaptation to shape plant growth responses to arbuscular mycorrhizal inoculation. RESULTS: The magnitude and direction for mean effect size of mycorrhizal inoculation on host biomass depended on the geographic origin of the soil and symbiotic partners. Sympatric combinations of plants, AM fungi, and soil yielded large increases in host biomass compared to when all three components were allopatric. The origin of either the fungi or the plant relative to the soil was important for explaining the effect of AM inoculation on plant biomass. If plant and soil were sympatric but allopatric to the fungus, the positive effect of AM inoculation was much greater than when all three components were allopatric, suggesting potential local adaptation of the plant to the soil; however, if fungus and soil were sympatric (but allopatric to the plant) the effect of AM inoculation was indistinct from that of any allopatric combinations, indicating maladaptation of the fungus to the soil. CONCLUSIONS: This study underscores the potential to detect local adaptation for mycorrhizal relationships across a broad swath of the literature. Geographic origin of plants relative to the origin of AM fungal communities and soil is important for describing the effect of mycorrhizal inoculation on plant biomass, suggesting that local adaptation represents a powerful factor for the establishment of novel combinations of fungi, plants, and soils. These results highlight the need for subsequent investigations of local adaptation in the mycorrhizal symbiosis and emphasize the importance of routinely considering the origin of plant, soil, and fungal components
    corecore